Question

1) demonstrate that the bisector of an isosceles triangle is equal to the perpendicular bisector and the height

292

likes
1461 views

Answer to a math question 1) demonstrate that the bisector of an isosceles triangle is equal to the perpendicular bisector and the height

Expert avatar
Dexter
4.7
108 Answers
Para demonstrar que a bissetriz de um triângulo isósceles é igual à bissetriz perpendicular e à altura, podemos seguir estes passos: ### Considere um triângulo isósceles Seja o triângulo \( ABC \) um triângulo isósceles onde \( AB = AC \) e \( BC \) é a base. Seja \( D \) o ponto médio de \( BC \), e seja \( AD \) o segmento de reta do vértice \( A \) ao ponto \( D \). ### Propriedades do Triângulo Isósceles 1. **Bissetor**: O segmento \( AD \) é a bissetriz do ângulo \( \ângulo BAC \). 2. **Mediatriz Perpendicular**: Como \( D \) é o ponto médio de \( BC \), o segmento de reta \( AD \) também é a mediatriz perpendicular de \( BC \). 3. **Altura**: O segmento de reta \( AD \) é a altura do triângulo \( ABC \) do vértice \( A \) à base \( BC \). ### Prova 1. **Mostre que \( AD \) é a Bissetriz**: - Como \( AB = AC \), pelas propriedades dos triângulos isósceles, a bissetriz do ângulo \( AD \) divide \( \ângulo BAC \) em dois ângulos iguais: \[ \ângulo RUIM = \ângulo CAD \] 2. **Mostre que \( AD \) é a Bissetriz Perpendicular**: - Por definição, a mediatriz de um segmento é uma reta que divide o segmento em dois comprimentos iguais e é perpendicular a ele. - Como \( D \) é o ponto médio de \( BC \), temos: \[ BD = CC \] - Para mostrar que \( AD \) é perpendicular a \( BC \), podemos usar o fato de que: \[ \triângulo ABD \cong \triângulo ACD \quad \texto{(por SSS: \( AB = AC \), \( BD = DC \), e \( AD = AD \))} \] - Esta congruência implica que: \[ \ângulo ABD = \ângulo ACD = 90^\circ \] - Assim, \( AD \) é perpendicular a \( BC \). 3. **Mostre que \( AD \) é a Altura**: - A altura de um triângulo é definida como um segmento de reta perpendicular de um vértice à reta que contém o lado oposto. - Como \( AD \) é perpendicular a \( BC \), ele serve como altura do vértice \( A \) até a base \( BC \). ### Conclusão A partir dos passos acima, concluímos que em um triângulo isósceles \( ABC \): - A bissetriz \( AD \) do ângulo \( A \) é igual à bissetriz perpendicular de \( BC \). - O segmento \( AD \) também atua como a altura do vértice \( A \) à base \( BC \). Assim, a bissetriz, a bissetriz perpendicular e a altura são todos o mesmo segmento de reta \( AD \).

Frequently asked questions (FAQs)
Question: Find the period and amplitude of the tangent function f(x) = tan x.
+
What is 2 raised to the power of 7 multiplied by 5, divided by the square root of 49?
+
How many ways are there to arrange the letters in the word "COMBINATORICS"?
+
New questions in Mathematics
2.5 / 21.85
The miles per gallon (mpg) for each of 20 medium-sized cars selected from a production line during the month of March are listed below. 23.0 21.2 23.5 23.6 20.1 24.3 25.2 26.9 24.6 22.6 26.1 23.1 25.8 24.6 24.3 24.1 24.8 22.1 22.8 24.5 (a) Find the z-scores for the largest measurement. (Round your answers to two decimal places.) z =
4. Show that if n is any integer, then n^2 3n 5 is an odd integer
If the midpoint of point A on the x=3 line and point B on the y=-2 line is C(-2,0), what is the sum of the ordinate of point A and the abscissa of point B?
41/39 - 1/38
-3(-4x+5)=-6(7x-8)+9-10x
What is 28 marks out of 56 as a percentage
The cost of unleaded gasoline in the Bay Area once followed an unknown distribution with a mean of $4.59 and a standard deviation of $0.10. Sixteen gas stations from the Bay Area are randomly chosen. We are interested in the average cost of gasoline for the 16 gas stations. 84. Find the probability that the average price for 30 gas stations is less than $4.55. a 0.6554 b 0.3446 c 0.0142 d 0.9858 e 0
Two business partners have a bank balance of $17,942.00. After the first year their interest brings their balance to $18,928.91. What rate of interest is earned?
form a key for your lock containing the numbers 2 2 5 8 How many different keys can you form?
A person decides to invest money in fixed income securities to redeem it at the end of 3 years. In this way, you make monthly deposits of R$300.00 in the 1st year, R$400.00 in the 2nd year and R$500.00 in the 3rd year. Calculate the amount, knowing that compound interest is 0.6% per month for the entire period. The answer is 15,828.60
Use the power rule for logarithms to solve the following word problem exactly. If you invest $1, 000 at 5% interest compounded annually, how many years will it take before you have $2,000?
(2m+3)(4m+3)=0
What is 75 percent less than 60
-1%2F2x-4%3D18
ind the z-score for which 72% of the distribution's area lies between -z and z. -1.7417, 1.7417 -1.1538, 1.1538 -1.0803, 1.0803 -2.826, 2.826
Calculate the difference between 407 and 27
Cuboid containers (open at the top) should be examined with regard to their volume. The figure below shows a network of such containers (x ∈ Df). Determine a function ƒ (assignment rule and definition area D) that describes the volume of these containers and calculate the volume of such a container if the content of the base area is 16 dm². Show that this function f has neither a local maximum nor a global maximum
y’’ -4y’ +4y = (12x^2 -6x)e^2x Y(0)= 1 Y’(0)=0 Y(x)=c1y1+c2y2+yp
f(r) = 1/r+9 find f(x^2) + 1