Question

1) demonstrate that the bisector of an isosceles triangle is equal to the perpendicular bisector and the height

292

likes
1461 views

Answer to a math question 1) demonstrate that the bisector of an isosceles triangle is equal to the perpendicular bisector and the height

Expert avatar
Dexter
4.7
113 Answers
Para demonstrar que a bissetriz de um triângulo isósceles é igual à bissetriz perpendicular e à altura, podemos seguir estes passos: ### Considere um triângulo isósceles Seja o triângulo \( ABC \) um triângulo isósceles onde \( AB = AC \) e \( BC \) é a base. Seja \( D \) o ponto médio de \( BC \), e seja \( AD \) o segmento de reta do vértice \( A \) ao ponto \( D \). ### Propriedades do Triângulo Isósceles 1. **Bissetor**: O segmento \( AD \) é a bissetriz do ângulo \( \ângulo BAC \). 2. **Mediatriz Perpendicular**: Como \( D \) é o ponto médio de \( BC \), o segmento de reta \( AD \) também é a mediatriz perpendicular de \( BC \). 3. **Altura**: O segmento de reta \( AD \) é a altura do triângulo \( ABC \) do vértice \( A \) à base \( BC \). ### Prova 1. **Mostre que \( AD \) é a Bissetriz**: - Como \( AB = AC \), pelas propriedades dos triângulos isósceles, a bissetriz do ângulo \( AD \) divide \( \ângulo BAC \) em dois ângulos iguais: \[ \ângulo RUIM = \ângulo CAD \] 2. **Mostre que \( AD \) é a Bissetriz Perpendicular**: - Por definição, a mediatriz de um segmento é uma reta que divide o segmento em dois comprimentos iguais e é perpendicular a ele. - Como \( D \) é o ponto médio de \( BC \), temos: \[ BD = CC \] - Para mostrar que \( AD \) é perpendicular a \( BC \), podemos usar o fato de que: \[ \triângulo ABD \cong \triângulo ACD \quad \texto{(por SSS: \( AB = AC \), \( BD = DC \), e \( AD = AD \))} \] - Esta congruência implica que: \[ \ângulo ABD = \ângulo ACD = 90^\circ \] - Assim, \( AD \) é perpendicular a \( BC \). 3. **Mostre que \( AD \) é a Altura**: - A altura de um triângulo é definida como um segmento de reta perpendicular de um vértice à reta que contém o lado oposto. - Como \( AD \) é perpendicular a \( BC \), ele serve como altura do vértice \( A \) até a base \( BC \). ### Conclusão A partir dos passos acima, concluímos que em um triângulo isósceles \( ABC \): - A bissetriz \( AD \) do ângulo \( A \) é igual à bissetriz perpendicular de \( BC \). - O segmento \( AD \) também atua como a altura do vértice \( A \) à base \( BC \). Assim, a bissetriz, a bissetriz perpendicular e a altura são todos o mesmo segmento de reta \( AD \).

Frequently asked questions (FAQs)
What is the value of 'a' in the parabola function 𝑦 = ax^2 if it opens upwards, has a vertex at (0,0), and passes through the point (2,8)?
+
Find the cubic equation roots of x^3 - 5x^2 + 6x - 2.
+
What is the volume of a rectangular prism with length 4, width 6, and height 7?
+
New questions in Mathematics
A person who weighs 200 pounds on earth would weigh about 32 pounds on the moon. Find the weight of a person on earth who would weigh 15 pounds on the moon.
For a temperature range between -3 degrees Celsius to 5 degrees Celsius, what is the temperature range in degrees Farenheight
Determine the minimum degree that an algebraic equation can assume knowing that it admits 2 as a double root and -i as a triple root
The price per night of a suite at the Baglioni Hotel in Venice is 1896 euros, VAT included. The VAT in Italy is 25%. The hotel gets a return of 10% out of the price VAT included. b) What is the profit value made by the hotel for one
89, ÷ 10
If a two-branch parallel current divider network, if the resistance of one branch is doubled while keeping all other factors constant, what happens to the current flow through that branch and the other branch? Select one: a. The current through the doubled resistance branch remains unchanged, and the current through the other branch decreases. b. The current through the doubled resistance branch decreases, and the current through the other branch remains unchanged. c. The current through the doubled resistance branch increases, and the current through the other branch remains unchanged. d. The current through both branches remain unchanged.
Use linear approximation to estimate the value of the sine of 31o.
The points (-5,-4) and (3,6) are the ends of the diameter of the circle calculate subequation
(2m+3)(4m+3)=0
Determine the Linear function whose graph passes through the points (6, -2) and has slope 3.
We have two distributions: A (M = 66.7, 95% CI = [60.3, 67.1]) / B (M = 71.3 95% CI = [67.7, 74.9]). Erin maintains that B is significantly larger than A. Provide your opinion on Erin’s argument and justify your opinion.
Find the area of a triangle ABC when m<C = 14 degrees, a = 5.7 miles, and b = 9.3 miles.
When taking a test with m closed answers, a student knows the correct answer with probability p, otherwise he chooses one of the possible answers at random. What is the probability that the student knows the correct answer given that he answered the question correctly.
A company dedicated to the manufacture of shirts sells the units at a price of $40, the cost of each shirt is $24, a commission is paid for the sale of a unit of shirt of $2 and its fixed costs are $3500 Determine the marginal contribution
The average weekly earnings in the leisure and hospitality industry group for a re‐ cent year was $273. A random sample of 40 workers showed weekly average ear‐ nings of $285 with the population standard deviation equal to 58. At the 0.05 level of significance can it be concluded that the mean differs from $273? Find a 95% con‐ fidence interval for the weekly earnings and show that it supports the results of the hypothesis test.
0<x<2π aralığındaki f(x)=x÷2 fonksiyonunun 0 < x < 4π için grafiğini çiziniz ve 0<x<2n için Fourier seri dönüşümünü gerçekleştiriniz.
Convert (324)𝑓𝑖𝑣𝑒 into base-ten
Sin(5pi/3)
A person travels by car from one city to another with different constant speeds between pairs of cities. She drives for 55.0 min at 100.0 km/h, 14.0 min at 65.0 km/h, and 45.0 min at 60.0 km/h and spends 20.0 min eating lunch and buying gas. (a) Determine the average speed for the trip.
A gas is leaking at 3.5ft3/min in a room of 2.9m by 6.9ft by 15.7m. How long would it take (in seconds) for 22% of the room to reach the LFL, if the gas has a LFL of 2.51%?