Question

1) demonstrate that the bisector of an isosceles triangle is equal to the perpendicular bisector and the height

292

likes
1461 views

Answer to a math question 1) demonstrate that the bisector of an isosceles triangle is equal to the perpendicular bisector and the height

Expert avatar
Dexter
4.7
114 Answers
Para demonstrar que a bissetriz de um triângulo isósceles é igual à bissetriz perpendicular e à altura, podemos seguir estes passos: ### Considere um triângulo isósceles Seja o triângulo \( ABC \) um triângulo isósceles onde \( AB = AC \) e \( BC \) é a base. Seja \( D \) o ponto médio de \( BC \), e seja \( AD \) o segmento de reta do vértice \( A \) ao ponto \( D \). ### Propriedades do Triângulo Isósceles 1. **Bissetor**: O segmento \( AD \) é a bissetriz do ângulo \( \ângulo BAC \). 2. **Mediatriz Perpendicular**: Como \( D \) é o ponto médio de \( BC \), o segmento de reta \( AD \) também é a mediatriz perpendicular de \( BC \). 3. **Altura**: O segmento de reta \( AD \) é a altura do triângulo \( ABC \) do vértice \( A \) à base \( BC \). ### Prova 1. **Mostre que \( AD \) é a Bissetriz**: - Como \( AB = AC \), pelas propriedades dos triângulos isósceles, a bissetriz do ângulo \( AD \) divide \( \ângulo BAC \) em dois ângulos iguais: \[ \ângulo RUIM = \ângulo CAD \] 2. **Mostre que \( AD \) é a Bissetriz Perpendicular**: - Por definição, a mediatriz de um segmento é uma reta que divide o segmento em dois comprimentos iguais e é perpendicular a ele. - Como \( D \) é o ponto médio de \( BC \), temos: \[ BD = CC \] - Para mostrar que \( AD \) é perpendicular a \( BC \), podemos usar o fato de que: \[ \triângulo ABD \cong \triângulo ACD \quad \texto{(por SSS: \( AB = AC \), \( BD = DC \), e \( AD = AD \))} \] - Esta congruência implica que: \[ \ângulo ABD = \ângulo ACD = 90^\circ \] - Assim, \( AD \) é perpendicular a \( BC \). 3. **Mostre que \( AD \) é a Altura**: - A altura de um triângulo é definida como um segmento de reta perpendicular de um vértice à reta que contém o lado oposto. - Como \( AD \) é perpendicular a \( BC \), ele serve como altura do vértice \( A \) até a base \( BC \). ### Conclusão A partir dos passos acima, concluímos que em um triângulo isósceles \( ABC \): - A bissetriz \( AD \) do ângulo \( A \) é igual à bissetriz perpendicular de \( BC \). - O segmento \( AD \) também atua como a altura do vértice \( A \) à base \( BC \). Assim, a bissetriz, a bissetriz perpendicular e a altura são todos o mesmo segmento de reta \( AD \).

Frequently asked questions (FAQs)
What is the area of a triangle with side lengths 5, 12, and 13 according to Heron’s formula?
+
Find the value of sinh(arccosh(2)) * tanh(3) - sech(-4), where sinh, arccosh, tanh, and sech are hyperbolic functions. (
+
What are the solutions to the quadratic equation 2x² + 5x + 3 = 0?
+
New questions in Mathematics
Solution to the equation y'' - y' - 6y = 0
The patient is prescribed a course of 30 tablets. The tablets are prescribed “1 tablet twice a day”. How many days does a course of medication last?
Derivative of x squared
Consider numbers from 1 to 2023. We delete 3 consecutive numbers so, that the avarage of the left numbers is a whole number
A soft drink machine outputs a mean of 23 ounces per cup. The machines output is normally distributed with a standard deviation of 3 ounces. What is the probability of filling a cup between 26 and 28 ounces round your answer to four decimal places
You are planning to buy a car worth $20,000. Which of the two deals described below would you choose, both with a 48-month term? (NB: estimate the monthly payment of each offer). i) the dealer offers to take 10% off the price, then lend you the balance at an annual percentage rate (APR) of 9%, monthly compounding. ii) the dealer offers to lend you $20,000 (i.e., no discount) at an APR of 3%, monthly compounding.
Sean must chose a 6- digit PIN number for his online banking account.Each digit can be chosen from 0 to 9. How many different possible PIN numbers can sean chose.
Estimate the quotient for 3.24 ÷ 82
4+168×10³×d1+36×10³×d2=-12 -10+36×10³×d1+72×10³×d2=0
3+7
9.25=2pi r solve for r
Derivative of 2x
How to factorise 5y^2 -7y -52
Consider mixing 150 ml, 0.1M, HCI with 100 ml, 0.2M, KOH solution. Determine the pH of final solution.
Select a variable and collect at least 50 data values. For example, you may ask the students in the college how many hours they study per week or how old they are, etc. a. Explain what your target population was. b. State how the sample was selected. c. Summarise the data by using a frequency table. d. Calculate all the descriptive measures for the data and describe the data set using the measures. e. Present the data in an appropriate way. f. Write a paragraph summarizing the data.
Hola👋🏻 Toca en "Crear Nueva Tarea" para enviar tu problema de matemáticas. ¡Uno de nuestros expertos comenzará a trabajar en ello de inmediato!
A rectangular swimming pool has a length of 14 feet, a width of 26 feet and a depth of 5 feet. Round answers to the nearest hundredth as needed. (a) How many cubic feet of water can the pool hold? cubic feet (b) The manufacturer suggests filling the pool to 95% capacity. How many cubic feet of water is this? cubic feet
The company produces a product with a variable cost of $90 per unit. With fixed costs of $150,000 and a selling price of $1,200 per item, how many units must be sold to achieve a profit of $400,000?
To apply a diagnostic test, in how many ways can 14 students be chosen out of 25? if the order does not matter
In a cheese factory, one pie costs 3800 denars. The fixed ones costs are 1,200,000 denars, and variable costs are 2,500 denars per pie. To encounter: a) income functions. profit and costs; b) the break-even point and profit and loss intervals.