Question

2) One way of making sodium chloride is according to the following unbalanced equation: Na(s) + Cl2(g) β†’ NaCl(s) In a reaction, a student mixed 3.00 grams of Na(s) with 6.2 grams of Cl2(g), making 7.60 grams of NaCl. Balance the equation and determine which, if any, of the starting materials was in excess? . [Molar mass (g/mol): Na = 22.99, and Cl = 35.45] 3) If 27.0 mL of 0.25 M NaCl aqueous solution are mixed with 36.0 mL of 0.42 M Ca(NO3)2 aqueous solution. Is there a reaction taking place? Find the molarity of each ion present in the final solution. 4) Vinegar contains acetic acid (HC2H3O2), which is responsible for its acidity. In one analysis, a 20.00 mL sample of vinegar was titrated with 0.50 M NaOH(aq). It required 35.5 mL of this sodium hydroxide titrant to neutralize the acid in the vinegar sample. If 1.000 liter of this vinegar weighs 1.008 kg, what is the percent, by weight, of acetic acid in this vinegar sample? . [Molar mass (g/mol): C = 12.01, H = 1.008, Na = 22.99, and O = 16] 5) A 50.0 mL sample of 18.0 M sulfuric acid was diluted with enough water in a volumetric flask to make 5.00x10^2 mL of solution. A 50.0 mL aliquot of this solution was then further diluted to a volume of 2.50x10^2 mL. What is the molarity of the solution after the second dilution?

134

likes
671 views

Answer to a math question 2) One way of making sodium chloride is according to the following unbalanced equation: Na(s) + Cl2(g) β†’ NaCl(s) In a reaction, a student mixed 3.00 grams of Na(s) with 6.2 grams of Cl2(g), making 7.60 grams of NaCl. Balance the equation and determine which, if any, of the starting materials was in excess? . [Molar mass (g/mol): Na = 22.99, and Cl = 35.45] 3) If 27.0 mL of 0.25 M NaCl aqueous solution are mixed with 36.0 mL of 0.42 M Ca(NO3)2 aqueous solution. Is there a reaction taking place? Find the molarity of each ion present in the final solution. 4) Vinegar contains acetic acid (HC2H3O2), which is responsible for its acidity. In one analysis, a 20.00 mL sample of vinegar was titrated with 0.50 M NaOH(aq). It required 35.5 mL of this sodium hydroxide titrant to neutralize the acid in the vinegar sample. If 1.000 liter of this vinegar weighs 1.008 kg, what is the percent, by weight, of acetic acid in this vinegar sample? . [Molar mass (g/mol): C = 12.01, H = 1.008, Na = 22.99, and O = 16] 5) A 50.0 mL sample of 18.0 M sulfuric acid was diluted with enough water in a volumetric flask to make 5.00x10^2 mL of solution. A 50.0 mL aliquot of this solution was then further diluted to a volume of 2.50x10^2 mL. What is the molarity of the solution after the second dilution?

Expert avatar
Gene
4.5
108 Answers
2) To balance the equation, we need to make sure that the number of atoms of each element is equal on both sides of the equation.

The equation without balancing is:
Na(s) + Cl2(g) β†’ NaCl(s)

To balance the equation, we add coefficients in front of the reactants and products:
2 Na(s) + Cl2(g) β†’ 2 NaCl(s)

Now, let's calculate the number of moles of each substance.

Number of moles of Na(s) = mass / molar mass = 3.00 g / 22.99 g/mol β‰ˆ 0.1306 mol
Number of moles of Cl2(g) = mass / molar mass = 6.2 g / 35.45 g/mol β‰ˆ 0.1747 mol

From the balanced equation, we can see that the mole ratio between Na(s) and Cl2(g) is 2:1.
Therefore, the theoretical amount of Na(s) needed to react with 0.1747 mol of Cl2(g) is 0.1747 mol / 2 = 0.0873 mol.

Since we have 0.1306 mol of Na(s) available, which is greater than the theoretical amount needed (0.0873 mol), Na(s) is in excess.

Answer: Na(s) was in excess.

3) To determine if a reaction takes place, we need to check if there is a possible chemical reaction between NaCl and Ca(NO3)2. By looking at the formulas, we can see that both compounds contain ions (Na+, Cl-, Ca2+, NO3-) and can potentially react.

To find the molarity of each ion present in the final solution, we need to calculate the moles of each ion.

For NaCl:
Number of moles of NaCl = volume(mL) * molarity = 27.0 mL * 0.25 mol/L = 6.75 mmol
The concentration of Na+ and Cl- ions in the final solution is 0.25 M.

For Ca(NO3)2:
Number of moles of Ca(NO3)2 = volume(mL) * molarity = 36.0 mL * 0.42 mol/L = 15.12 mmol
Since Ca(NO3)2 dissociates into Ca2+ and 2 NO3- ions, the molar concentration of Ca2+ ions is 0.42 M, while the molar concentration of NO3- ions is 2 * 0.42 M = 0.84 M.

Answer: The molarity of each ion present in the final solution is:
- Na+: 0.25 M
- Cl-: 0.25 M
- Ca2+: 0.42 M
- NO3-: 0.84 M

4) To find the percent, by weight, of acetic acid in the vinegar sample, we need to determine the moles of acetic acid and the weight percent.

The equation for the reaction between acetic acid and NaOH is:
HC2H3O2(aq) + NaOH(aq) β†’ NaC2H3O2(aq) + H2O(l)

From the balanced equation, we can see that the mole ratio between acetic acid and NaOH is 1:1.
Therefore, the moles of acetic acid in the vinegar sample is equal to the moles of NaOH used in the titration.

Number of moles of NaOH = volume(L) * molarity = 0.0355 L * 0.50 mol/L = 0.0178 mol

Since the molar mass of acetic acid (HC2H3O2) = 12.01 g/mol + 2 * 1.008 g/mol + 3 * 16.00 g/mol = 60.05 g/mol, we can calculate the weight of acetic acid in the vinegar sample.

Weight of acetic acid = moles * molar mass = 0.0178 mol * 60.05 g/mol = 1.067 g

To calculate the percent, by weight, of acetic acid in the vinegar sample, we use the following formula:

Percent by weight = (weight of acetic acid / weight of vinegar sample) * 100

The weight of vinegar sample = 1.008 kg = 1008 g

Percent by weight = (1.067 g / 1008 g) * 100 β‰ˆ 0.1059%

Answer: The percent, by weight, of acetic acid in the vinegar sample is approximately 0.1059%.

5) To find the molarity of the solution after the second dilution, we need to use the concept of dilution.

The formula for dilution is:
C1V1 = C2V2

Where:
C1 = initial concentration
V1 = initial volume
C2 = final concentration
V2 = final volume

Using the given data:
C1 = 18.0 M
V1 = 50.0 mL = 0.0500 L
V2 = 2.50x10^2 mL = 0.250 L

Rearranging the formula, we can solve for C2:

C2 = (C1V1) / V2
C2 = (18.0 M * 0.0500 L) / 0.250 L
C2 = 3.6 M

Answer: The molarity of the solution after the second dilution is 3.6 M.

Frequently asked questions (FAQs)
What is the variance of the dataset {5, 9, 12, 15, 18} using the population variance formula?
+
What is the sine of angle A if the opposite side is 4 and the hypotenuse is 5?
+
What is the area of a rectangle with length 8 units and width 6 units?
+
New questions in Mathematics
A sample is chosen from a population with y = 46, and a treatment is then administered to the sample. After treatment, the sample mean is M = 47 with a sample variance of s2 = 16. Based on this information, what is the value of Cohen's d?
The patient is prescribed a course of 30 tablets. The tablets are prescribed β€œ1 tablet twice a day”. How many days does a course of medication last?
A book is between 400 and 450 pages. If we count them 2 at a time there is none left over, if we count them 5 at a time there is none left over and if we count them 7 at a time there are none left over, how many pages does the book have?
Kayla has $8,836.00 in her savings account. The bank gives Kayla 5%of the amount of money in account as a customer bonus. What amount of money does the bank give Kayla? Justify your answer on a 6th grade level.
A food delivery company charges on average a delivery fee of $5 per order (including food and shipping) and has monthly fixed costs of $600. If the average cost of each meal delivered that is revenue for the company is $10 and the company has a monthly profit of $800, how many orders must they deliver per month?
The profit G of the company CHUNCHES SA is given by G(x) = 3Γ—(40 – Γ—), where Γ— is the quantity of items sold. Find the maximum profit.
An integer is taken at random from the first 40 positive integers. What is the probability that the integer is divisible by 5 or 6?
The function g:Q→Q is a ring homomorphism such that g(3)=3 and g(5)=5. What are the values of g(8) and g(9)?
the probabilty that a person has a motorcycle, given that she owns a car 25%. the percentage of people owing a motorcycle is 15% and that who own a car is 35%. find probabilty that a person owns any one or both of those
The sum of two numbers is equal to 58 and the largest exceeds by at least 12. Find the two numbers
41/39 - 1/38
Find 2 numbers whose sum is 47 and whose subtraction is 13
reduce the expression (7.5x 12)Γ·0.3
Determine the increase of the function y=4xβˆ’5 when the argument changes from x1=2 to x2=3
Fill in the P(X-x) values to give a legitimate probability distribution for the discrete random variable X, whose possible values are -5 ,3 , 4, 5 , and 6.
36 cars of the same model that were sold in a dealership, and the number of days that each one remained in the dealership yard before being sold is determined. The sample average is 9.75 days, with a sample standard deviation of 2, 39 days. Construct a 95% confidence interval for the population mean number of days that a car remains on the dealership's forecourt
Write the detailed definition of a supply chain/logistics related maximization problem with 8 variables and 6 constraints. Each constraint should have at least 6 variables. Each constraint should have At least 5 variables will have a value greater than zero in the resulting solution. Variables may have decimal values. Type of equations is less than equal. Numbers and types of variables and constraints are important and strict. Model the problem and verify that is feasible, bounded and have at least 5 variables are nonzero.
prove that for sets SS, AA, BB, and CC, where AA, BB, and CC are subsets of SS, the following equality holds: (Aβˆ’B)βˆ’C=(Aβˆ’C)βˆ’(Bβˆ’C)
A 20,000 kg school bus is moving at 30 km per hour on a straight road. At that moment, it applies the brakes until it comes to a complete stop after 15 seconds. Calculate the acceleration and the force acting on the body.
if y=1/w^2 yw=2-x; find dy/dx