1. Use the formula for distance in uniformly accelerated motion:
s = \frac{1}{2} g t^2
2. Rearrange the formula to solve for \( t \):
t^2 = \frac{2s}{g}
3. Take the square root of both sides:
t = \sqrt{\frac{2s}{g}}
4. Substitute the given values:
t = \sqrt{\frac{2 \times 10.0 \, \text{meters}}{9.8 \, \text{m/s}^2}}
5. Calculate:
t = \sqrt{\frac{20.0 \, \text{meters}}{9.8 \, \text{m/s}^2}}
6. Simplify and take the square root:
t = \sqrt{2.04}
7. Approximately:
t \approx 1.43 \, \text{seconds}
The answer is:
t \approx 1.43 \, \text{seconds}