Una familia compra una casa que le cuesta $4,000,000.00. Pagan $1,000,000.00 en efectivo y obtienen una hipoteca a 30 años para pagar la diferencia a 8% de interés convertible mensual. ¿Cuál es el valor de sus pagos mensuales?
[SOLUTION]
P = 24,322.84
[STEP-BY-STEP]
1. Determinar la cantidad del préstamo:
4,000,000 - 1,000,000 = 3,000,000
2. Convertir el término del préstamo a meses:
30 \times 12 = 360
3. Calcular la tasa mensual de interés:
\frac{8\%}{12} = 0.67\% = 0.0067
4. Usar la fórmula de pago mensual de una hipoteca:
P = \frac{r \cdot PV}{1 - (1 + r)^{-n}}
Donde:
- P es el pago mensual.
- PV = 3,000,000 es el monto del préstamo.
- r = 0.0067 es la tasa de interés mensual.
- n = 360 es el número de pagos.
5. Sustituyendo los valores:
P = \frac{0.0067 \cdot 3,000,000}{1 - (1 + 0.0067)^{-360}}
6. Calcular los valores dentro de la fórmula:
P = \frac{20,100}{1 - (1.0067)^{-360}}
7. Calcular la parte exponencial:
1 - (1.0067)^{-360} \approx 0.891
8. Finalmente:
P = \frac{20,100}{0.109} \approx 24,322.84
Respuesta:
P = 24,322.84