1. Convert the dimensions to the same unit (inches).
10 \frac{3}{4} \text{ feet} = 10 \cdot 12 + \frac{3}{4} \cdot 12 = 120 + 9 = 129 \text{ inches}
2. Calculate the area of the backsplash in square inches.
\text{Area} = 25 \frac{1}{2} \text{ inches} \times 129 \text{ inches} = \frac{51}{2} \times 129 = \frac{51 \times 129}{2} = \frac{6579}{2} = 3289.5 \text{ square inches}
3. Calculate the area of one tile (12 inches by 12 inches).
\text{Area of one tile} = 12 \text{ inches} \times 12 \text{ inches} = 144 \text{ square inches}
4. Determine the number of tiles needed.
\text{Number of tiles} = \frac{3289.5}{144} \approx 22.847 \Rightarrow 23 \text{ tiles}
Therefore, Albert would need 23 tiles to complete the backsplash.