Question

An electron is ejected with speed v=107 m/s into the uniform field created by the flat and parallel sheets of the figure. The field is directed vertically downwards and is null except in the space between the sheets. The electron It enters through a point located at an equal distance between the two sheets. Yes when you leave field, the electron passes just through the edge of the sheet: a) Find the intensity of the field b) Find the direction of the speed of the electron when it leaves the field.

158

likes
788 views

Answer to a math question An electron is ejected with speed v=107 m/s into the uniform field created by the flat and parallel sheets of the figure. The field is directed vertically downwards and is null except in the space between the sheets. The electron It enters through a point located at an equal distance between the two sheets. Yes when you leave field, the electron passes just through the edge of the sheet: a) Find the intensity of the field b) Find the direction of the speed of the electron when it leaves the field.

Expert avatar
Neal
4.5
105 Answers
Para resolver este problema, utilizaremos la ley de la fuerza eléctrica para determinar la intensidad del campo y la dirección de la velocidad del electrón cuando sale del campo.

a) Para hallar la intensidad del campo, utilizamos la siguiente fórmula:

F = q \cdot E

donde F es la fuerza eléctrica, q es la carga del electrón y E es la intensidad del campo.

Sabemos que la fuerza eléctrica es la fuerza centrípeta que actúa sobre el electrón, por lo que podemos escribir:

F = \frac{{m \cdot v^2}}{{r}}

donde m es la masa del electrón, v es su velocidad y r es el radio de la trayectoria del electrón.

El radio de la trayectoria del electrón es la distancia entre las dos láminas, que llamaremos d. Dado que el electrón entra por un punto situado a igual distancia entre las láminas, podemos decir que r = d/2.

Reemplazando estos valores en la ecuación de la fuerza eléctrica, obtenemos:

\frac{{m \cdot v^2}}{{r}} = q \cdot E

\frac{{m \cdot v^2}}{{d/2}} = q \cdot E

Resolviendo para E, obtenemos:

E = \frac{{2 \cdot m \cdot v^2}}{{q \cdot d}}

Por lo tanto, la intensidad del campo es:

E = \frac{{2 \cdot m \cdot v^2}}{{q \cdot d}}

b) Para hallar la dirección de la velocidad del electrón cuando sale del campo, podemos utilizar la ley de conservación de la energía cinética:

\frac{{1}}{{2}} \cdot m \cdot v^2 = q \cdot V

donde V es el potencial eléctrico en el borde de la lámina.

La energía cinética inicial del electrón es igual a su energía cinética final más la energía potencial eléctrica ganada:

\frac{{1}}{{2}} \cdot m \cdot v^2 = q \cdot V

Dado que el electrón pasa justamente por el borde de la lámina cuando sale del campo, el potencial eléctrico en ese punto es cero (V = 0). Por lo tanto, la velocidad del electrón cuando sale del campo es la misma que su velocidad inicial, v = 107 m/s.

Por lo tanto, la dirección de la velocidad del electrón cuando sale del campo es la misma que su dirección inicial, que es vertical hacia abajo.

Answer:
a) La intensidad del campo es E = \frac{{2 \cdot m \cdot v^2}}{{q \cdot d}}
b) La dirección de la velocidad del electrón cuando sale del campo es vertical hacia abajo.

Frequently asked questions (FAQs)
Find the resultant vector of u = 3i - 4j and v = 5i + 2j.
+
What is the area of a triangle with base length 6 cm and height 8 cm?
+
Question: What is the surface area of a cube with side length 4 units?
+
New questions in Mathematics
To calculate the probability that a player will receive the special card at least 2 times in 8 games, you can use the binomial distribution. The probability of receiving the special card in a single game is 1/4 (or 25%), and the probability of not receiving it is 3/4 (or 75%).
Calculate the equation of the tangent line ay=sin(x) cos⁡(x)en x=π/2
X^2 = 25
The bus one way of the road which is 10km is heading with speed of 20km/h ,then the bus the other 10km is heading with speed of 60km/h. The middle speed of the road is it equal with arithmetic speed of the v1 and v2 ?
An electrical company manufactures batteries that have a duration that is distributed approximately normally, with a mean of 700 hours and a standard deviation of 40 hours. Find the probability that a randomly selected battery has an average life of less than 810 hours.
Equivalent expression of the sequence (3n-4)-(n-2)
The function g:Q→Q is a ring homomorphism such that g(3)=3 and g(5)=5. What are the values of g(8) and g(9)?
(-5/6)-(-5/4)
The sum of two numbers is equal to 58 and the largest exceeds by at least 12. Find the two numbers
15/5+7-5
In a order to compare the means of two populations, independent random samples of 410 observations are selected from each population, with Sample 1 the results found in the table to the right. Complete parts a through e below. X1 = 5,319 S1= 143 a. Use a 95% confidence interval to estimate the difference between the population means (H - H2) Interpret the contidence interval. The contidence interval IS (Round to one decimal place as needed.) Sample 2 X2 = 5,285 S2 = 198 Aa. Use a 95% confidence interval to estimate the difference between the population means (A1 - M2) Interpret the contidence interval. The contidence interval Is (Round to one decimal place as needed.) b. Test the null hypothesis Ho versus alternative hypothesis Ha (H What is the test statistic? H2) + Give the significance level of the test, and interpret the result. Use a = 0.05. Z=
A recurring sequence is one where elements repeat after completing one standard. If the sequence AB8C14D96AB8C1... is recurring its twentieth term is equal to: (A) B. (B) 8. (C) A. (D) 6. (E) D.
From 1975 through 2020 the mean annual gain of the Dow Jones Industrial Average was 652. A random sample of 34 years is selected from this population. What is the probability that the mean gain for the sample was between 400 and 800? Assume the standard deviation is 1539
Find the minimum value of the function y = -4 x3 + 60 x2 -252 x + 8 for values of x between x = 0 and x = 9 Enter the value of the function, not the value of x
nI Exercises 65-68, the latitudes of a pair of cities are given. Assume that one city si directly south of the other and that the earth is a perfect sphere of radius 4000 miles. Use the arc length formula in terms of degrees to find the distance between the two cities. 65. The North Pole: latitude 90° north Springfield, Illinois: latitude 40° north
a) Statistics scores are normally distributed with the mean of 75 and standard deviation of 7. What is the probability that a student scores between 80 and 88
The average weekly earnings in the leisure and hospitality industry group for a re‐ cent year was $273. A random sample of 40 workers showed weekly average ear‐ nings of $285 with the population standard deviation equal to 58. At the 0.05 level of significance can it be concluded that the mean differs from $273? Find a 95% con‐ fidence interval for the weekly earnings and show that it supports the results of the hypothesis test.
56 × 12 = 672. How should you adjust this answer 672 to determine 57 × 12? a) The answer increases by 1 b) The answer increases by 57 c) The answer increases by 56 d) The answer increases by 12
6(k-7) -2=5
Solve the system of equations by the addition method. 0.01x-0.08y=-0.1 0.2x+0.6y=0.2