Question

An electron is ejected with speed v=107 m/s into the uniform field created by the flat and parallel sheets of the figure. The field is directed vertically downwards and is null except in the space between the sheets. The electron It enters through a point located at an equal distance between the two sheets. Yes when you leave field, the electron passes just through the edge of the sheet: a) Find the intensity of the field b) Find the direction of the speed of the electron when it leaves the field.

158

likes
788 views

Answer to a math question An electron is ejected with speed v=107 m/s into the uniform field created by the flat and parallel sheets of the figure. The field is directed vertically downwards and is null except in the space between the sheets. The electron It enters through a point located at an equal distance between the two sheets. Yes when you leave field, the electron passes just through the edge of the sheet: a) Find the intensity of the field b) Find the direction of the speed of the electron when it leaves the field.

Expert avatar
Neal
4.5
105 Answers
Para resolver este problema, utilizaremos la ley de la fuerza eléctrica para determinar la intensidad del campo y la dirección de la velocidad del electrón cuando sale del campo.

a) Para hallar la intensidad del campo, utilizamos la siguiente fórmula:

F = q \cdot E

donde F es la fuerza eléctrica, q es la carga del electrón y E es la intensidad del campo.

Sabemos que la fuerza eléctrica es la fuerza centrípeta que actúa sobre el electrón, por lo que podemos escribir:

F = \frac{{m \cdot v^2}}{{r}}

donde m es la masa del electrón, v es su velocidad y r es el radio de la trayectoria del electrón.

El radio de la trayectoria del electrón es la distancia entre las dos láminas, que llamaremos d. Dado que el electrón entra por un punto situado a igual distancia entre las láminas, podemos decir que r = d/2.

Reemplazando estos valores en la ecuación de la fuerza eléctrica, obtenemos:

\frac{{m \cdot v^2}}{{r}} = q \cdot E

\frac{{m \cdot v^2}}{{d/2}} = q \cdot E

Resolviendo para E, obtenemos:

E = \frac{{2 \cdot m \cdot v^2}}{{q \cdot d}}

Por lo tanto, la intensidad del campo es:

E = \frac{{2 \cdot m \cdot v^2}}{{q \cdot d}}

b) Para hallar la dirección de la velocidad del electrón cuando sale del campo, podemos utilizar la ley de conservación de la energía cinética:

\frac{{1}}{{2}} \cdot m \cdot v^2 = q \cdot V

donde V es el potencial eléctrico en el borde de la lámina.

La energía cinética inicial del electrón es igual a su energía cinética final más la energía potencial eléctrica ganada:

\frac{{1}}{{2}} \cdot m \cdot v^2 = q \cdot V

Dado que el electrón pasa justamente por el borde de la lámina cuando sale del campo, el potencial eléctrico en ese punto es cero (V = 0). Por lo tanto, la velocidad del electrón cuando sale del campo es la misma que su velocidad inicial, v = 107 m/s.

Por lo tanto, la dirección de la velocidad del electrón cuando sale del campo es la misma que su dirección inicial, que es vertical hacia abajo.

Answer:
a) La intensidad del campo es E = \frac{{2 \cdot m \cdot v^2}}{{q \cdot d}}
b) La dirección de la velocidad del electrón cuando sale del campo es vertical hacia abajo.

Frequently asked questions (FAQs)
What is the value of f(3) when f(x) = x?
+
What is the value of the angle formed by the hands of a clock at 3:45?
+
Math question: What is the smallest positive integer solution to x³ + y³ = z³ (Fermat's Theorem)?
+
New questions in Mathematics
Find 2 numbers that the sum of 1/3 of the first plus 1/5 of the second will be equal to 13 and that if you multiply the first by 5 and the second by 7 you get 247 as the sum of the two products with replacement solution
Let 𝑢 = 𝑓(𝑥, 𝑦) = (𝑒^𝑥)𝑠𝑒𝑛(3𝑦). Check if 9((𝜕^2) u / 𝜕(𝑥^2)) +((𝜕^2) 𝑢 / 𝜕(𝑦^2)) = 0
a ferry travels 1/6 of the distance between two ports in 3/7 hour. the ferry travels at a constant rate. at this rate, what fraction of the distance between the two ports can the ferry travel in one hour?
Use the digits of 1,9,2,3 to come up with all the numbers 98 and 95
Imagine that you are in an electronics store and you want to calculate the final price of a product after applying a discount. The product you are interested in has an original price of $1000 MN, but, for today, the store offers a 25% discount on all its products. Develop an algorithm that allows you to calculate the final price you will pay, but first point out the elements.
Solve the math problem 400 students are asked if they live in an apartment and have a pet: Apartment: 120 Both: 30 Pet: 90 The probability that a randomly selected student not living in an apartment has a pet is
Perpetual annuities are a series of payments whose duration has no end. Explain how can we calculate them, if they have no end?
Use the power rule for logarithms to solve the following word problem exactly. If you invest $1, 000 at 5% interest compounded annually, how many years will it take before you have $2,000?
Show this compound proposition to be true or false. Paris is the capital of England or Rome is the capital of Italy
P(Z<z)=0.1003
30y - y . y = 144
The sick-leave time of employees in a firm in a month is normally with a mean of 100 hours and a standard deviation of 20 hours. Find the probability that the sick-leave time of an employee in a month exceeds 130 hours.
What is 75 percent less than 60
Sabendo+que+o+tri%C3%A2ngulo+ABC+%C3%A9+ret%C3%A2ngulo+e+que+um+de+seus+%C3%A2ngulos+mede+30+quanto+mede+o+terceiro+ tri%C3%A2ngulo
Express the trigonometric form of the complex z = -1 + i.
5x+13+7x-10=99
During a month's time, an automobile sales person receives a 6% commission on the first $5000 in sales, a 7% commission on the next $5000 sales, 8% commission on anything over $10,000. What is her commission for $36,000 in sales?
the product of a 2-digit number and a 3-digit number is about 50000, what are these numbers
Determine the general solution of the equation y′+y=e−x .
Matilde knows that, when driving her car from her office to her apartment, she spends a normal time of x minutes. In the last week, you have noticed that when driving at 50 mph (miles per hour), you arrive home 4 minutes earlier than normal, and when driving at 40 mph, you arrive home 5 minutes earlier later than normal. If the distance between your office and your apartment is y miles, calculate x + y.