Question

An electron is ejected with speed v=107 m/s into the uniform field created by the flat and parallel sheets of the figure. The field is directed vertically downwards and is null except in the space between the sheets. The electron It enters through a point located at an equal distance between the two sheets. Yes when you leave field, the electron passes just through the edge of the sheet: a) Find the intensity of the field b) Find the direction of the speed of the electron when it leaves the field.

158

likes
788 views

Answer to a math question An electron is ejected with speed v=107 m/s into the uniform field created by the flat and parallel sheets of the figure. The field is directed vertically downwards and is null except in the space between the sheets. The electron It enters through a point located at an equal distance between the two sheets. Yes when you leave field, the electron passes just through the edge of the sheet: a) Find the intensity of the field b) Find the direction of the speed of the electron when it leaves the field.

Expert avatar
Neal
4.5
105 Answers
Para resolver este problema, utilizaremos la ley de la fuerza eléctrica para determinar la intensidad del campo y la dirección de la velocidad del electrón cuando sale del campo.

a) Para hallar la intensidad del campo, utilizamos la siguiente fórmula:

F = q \cdot E

donde F es la fuerza eléctrica, q es la carga del electrón y E es la intensidad del campo.

Sabemos que la fuerza eléctrica es la fuerza centrípeta que actúa sobre el electrón, por lo que podemos escribir:

F = \frac{{m \cdot v^2}}{{r}}

donde m es la masa del electrón, v es su velocidad y r es el radio de la trayectoria del electrón.

El radio de la trayectoria del electrón es la distancia entre las dos láminas, que llamaremos d. Dado que el electrón entra por un punto situado a igual distancia entre las láminas, podemos decir que r = d/2.

Reemplazando estos valores en la ecuación de la fuerza eléctrica, obtenemos:

\frac{{m \cdot v^2}}{{r}} = q \cdot E

\frac{{m \cdot v^2}}{{d/2}} = q \cdot E

Resolviendo para E, obtenemos:

E = \frac{{2 \cdot m \cdot v^2}}{{q \cdot d}}

Por lo tanto, la intensidad del campo es:

E = \frac{{2 \cdot m \cdot v^2}}{{q \cdot d}}

b) Para hallar la dirección de la velocidad del electrón cuando sale del campo, podemos utilizar la ley de conservación de la energía cinética:

\frac{{1}}{{2}} \cdot m \cdot v^2 = q \cdot V

donde V es el potencial eléctrico en el borde de la lámina.

La energía cinética inicial del electrón es igual a su energía cinética final más la energía potencial eléctrica ganada:

\frac{{1}}{{2}} \cdot m \cdot v^2 = q \cdot V

Dado que el electrón pasa justamente por el borde de la lámina cuando sale del campo, el potencial eléctrico en ese punto es cero (V = 0). Por lo tanto, la velocidad del electrón cuando sale del campo es la misma que su velocidad inicial, v = 107 m/s.

Por lo tanto, la dirección de la velocidad del electrón cuando sale del campo es la misma que su dirección inicial, que es vertical hacia abajo.

Answer:
a) La intensidad del campo es E = \frac{{2 \cdot m \cdot v^2}}{{q \cdot d}}
b) La dirección de la velocidad del electrón cuando sale del campo es vertical hacia abajo.

Frequently asked questions (FAQs)
What is the product of three-fourths multiplied by two-thirds?
+
What is the period and amplitude of the function f(x) = cos(x)?
+
How many ways can a committee be formed with 5 members chosen from 10 candidates?
+
New questions in Mathematics
Students Ana Beatriz and Paula decided to register on a website with exercises to study for upcoming simulations, but to register on this website, they need to choose a password consisting of five characters, three numbers and two letters (capital letters). or lowercase). Letters and numbers can be in any position. They know that the alphabet is made up of twenty-six letters and that an uppercase letter differs from a lowercase letter in a password. What is the total number of possible passwords for registering on this site?
Use the digits of 1,9,2,3 to come up with all the numbers 98 and 95
Given the vectors: a = (2m – 3n, 4n – m) and b = (2, -3), find the values of m and n that make: a = 5 b.
(6.2x10^3)(3x10^-6)
(3x^(2) 9x 6)/(5x^(2)-20)
Suppose 56% of politicians are lawyers if a random sample of size 564 is selected, what is the probability that the proportion of politicians who are lawyers will differ from the total politicians proportions buy more than 4% round your answer to four decimal places
Equivalent expression of the sequence (3n-4)-(n-2)
Determine the minimum degree that an algebraic equation can assume knowing that it admits 2 as a double root and -i as a triple root
If 0101, what is the binary representation of the 4x16 decoder output?
Prove that it is not possible to arrange the integers 1 to 240 in a table with 15 rows and 16 columns in such a way that the sum of the numbers in each of the columns is the same.
The average number of babies born at a hospital is 6 per hour. What is the probability that three babies are born during a particular 1 hour period?
Find all real numbers x that satisfy the equation \sqrt{x^2-2}=\sqrt{3-x}
During a fishing trip Alex notices that the height h of the tide (in metres) is given by h=1−(1/2)*cos(πt/6) where t is measued in hours from the start of the trip. (a) Enter the exact value of h at the start of the trip in the box below.
Solve the equation: sin(2x) = 0.35 Where 0° ≤ x ≤ 360°. Give your answers to 1 d.p.
In an orchard there are 360 trees and they are distributed in 9 rows with the same number of trees in each row. 2 are rows of orange trees, 4 of apple trees and the rest are of pear trees. What fraction of the trees in the orchard are of each type of fruit tree? How many trees of each type are there?
prove that for sets SS, AA, BB, and CC, where AA, BB, and CC are subsets of SS, the following equality holds: (A−B)−C=(A−C)−(B−C)
Square root of 169 with steps
Find the orthogonal projection of a point A = (1, 2, -1) onto a line passing through the points Pi = (0, 1, 1) and P2 = (1, 2, 3).
3(x-4)=156
An export company grants a bonus of $100,000 pesos to distribute among three of its best employees, so that the first receives double the second and the latter receives triple the third. How much did each person receive?