1. Determine the gains for each day as unknowns:
x (primer dΓa), \frac{x}{2} (segundo dΓa), \frac{x}{6} (tercer dΓa)
2. Set up the total equation:
x + \frac{x}{2} + \frac{x}{6} = 1500
3. Combine the terms into a single fraction:
\frac{6x + 3x + x}{6} = 1500
4. Simplify and solve for x :
\frac{10x}{6} = 1500
10x = 9000
x = 900
5. Calculate the earnings for the second and third days:
\\ Segundo dΓa: \frac{x}{2} = \frac{900}{2} = 450
\\ Tercer dΓa: \frac{450}{3} = 150
So, the earnings each day are:
\\ Primer dΓa: 900
\\ Segundo dΓa: 450
\\ Tercer dΓa: 150