Question

Check if vector u vector v vector w are LI OR LD A)vector u=(1,2,1) vector v=(1,-1,-7) and vector w=(4,5,-4) B)vector u=(1,-1,2) vector v=(-3,4,1) and vector w=(1,0,9) C)vector u=(7,6,1) vector v=(2,0,1) and vector w=(1,-2,1)

121

likes
604 views

Answer to a math question Check if vector u vector v vector w are LI OR LD A)vector u=(1,2,1) vector v=(1,-1,-7) and vector w=(4,5,-4) B)vector u=(1,-1,2) vector v=(-3,4,1) and vector w=(1,0,9) C)vector u=(7,6,1) vector v=(2,0,1) and vector w=(1,-2,1)

Expert avatar
Jett
4.7
97 Answers
Verifique se vetor \mathbf{u}, vetor \mathbf{v} e vetor \mathbf{w} são LI OU LD

A) vetor \mathbf{u}=(1,2,1), vetor \mathbf{v}=(1,-1,-7) e vetor \mathbf{w}=(4,5,-4)
B) vetor \mathbf{u}=(1,-1,2), vetor \mathbf{v}=(-3,4,1) e vetor \mathbf{w}=(1,0,9)
C) vetor \mathbf{u}=(7,6,1), vetor \mathbf{v}=(2,0,1) e vetor \mathbf{w}=(1,-2,1)

\[Solution\]

A) LI
B) LI
C) LI

\[Step-by-Step\]

A) Para verificar se $\mathbf{u}$, $\mathbf{v}$ e $\mathbf{w}$ são linearmente independentes (LI), montamos a matriz $A$ com os vetores $\mathbf{u}$, $\mathbf{v}$ e $\mathbf{w}$ como colunas e verificamos se a determinante de $A$ é diferente de zero:
A = \begin{pmatrix}1 & 1 & 4 \\2 & -1 & 5 \\1 & -7 & -4\end{pmatrix}
\text{Det}(A) = 1 \cdot (-1 \cdot (-4) - 5 \cdot (-7)) - 1 \cdot (2 \cdot (-4) - 5 \cdot 1) + 4 \cdot (2 \cdot (-7) - (-1) \cdot 1) = 1 \cdot (4 + 35) - 1 \cdot (-8 - 5) + 4 \cdot (-14 + 1) = 1 \cdot 39 + 1 \cdot 13 + 4 \cdot (-13) = 39 + 13 - 52 = 0
\text{Det}(A) = 0 \\
Como o determinante é igual a zero, os vetores são linearmente dependentes.

B) Para verificar se $\mathbf{u}$, $\mathbf{v}$ e $\mathbf{w}$ são linearmente independentes (LI), montamos a matriz $A$ com os vetores $\mathbf{u}$, $\mathbf{v}$ e $\mathbf{w}$ como colunas e verificamos se a determinante de $A$ é diferente de zero:
A = \begin{pmatrix}1 & -3 & 1 \\-1 & 4 & 0 \\2 & 1 & 9\end{pmatrix}
\text{Det}(A) = 1 \cdot (4 \cdot 9 - 1 \cdot 0) - (-3) \cdot (-1 \cdot 9 - 2 \cdot 0) + 1 \cdot (-1 \cdot 1 - 4 \cdot 2) = 1 \cdot (36) - (-3) \cdot (-9) + 1 \cdot (-1 - 8) = 36 - 27 - 9 = 0
\text{Det}(A) = 0 \\
Como o determinante é igual a zero, os vetores são linearmente dependentes.

C) Para verificar se $\mathbf{u}$, $\mathbf{v}$ e $\mathbf{w}$ são linearmente independentes (LI), montamos a matriz $A$ com os vetores $\mathbf{u}$, $\mathbf{v}$ e $\mathbf{w}$ como colunas e verificamos se a determinante de $A$ é diferente de zero:
A = \begin{pmatrix}7 & 2 & 1 \\6 & 0 & -2 \\1 & 1 & 1\end{pmatrix}
\text{Det}(A) = 7 \cdot (0 \cdot 1 - -2 \cdot 1) - 2 \cdot (6 \cdot 1 - 1 \cdot 1) + 1 \cdot (6 \cdot 1 - 0 \cdot 1) = 7 \cdot (2) - 2 \cdot (6 - 1) + 1 \cdot (6) = 14 - 10 + 6 = 10
\text{Det}(A) = 10 \\
Como o determinante é diferente de zero, os vetores são linearmente independentes.

Frequently asked questions (FAQs)
What is the maximum value that a continuous function f(x) can attain on a closed interval [a, b]?
+
Question: If 30% of a cake is eaten, and there are 8 slices left, how many slices did the cake originally have?
+
Question: What is the maximum value of the function f(x) = 3x^2 + 5x - 2 over the interval [-2, 3]?
+
New questions in Mathematics
2x-y=5 x-y=4
3(4×-1)-2(×+3)=7(×-1)+2
If f(x) = 3x 2, what is the value of x so that f(x) = 11?
what is the annual rate on ​$525 at 0.046​% per day for 3 months?
9b^2-6b-5
2.3/-71.32
A construction company is working on two projects: house construction and building construction. Each house requires 4 weeks of work and produces a profit of $50,000. Each building requires 8 weeks of work and produces a profit of $100,000. The company has a total of 24 work weeks available. Furthermore, it is known that at least 2 houses and at least 1 building must be built to meet the demand. The company wants to maximize its profits and needs to determine how many houses and buildings it should build to meet demand and maximize profits, given time and demand constraints.
According to a survey in a country 27% of adults do not own a credit card suppose a simple random sample of 800 adults is obtained . Describe the sampling distribution of P hat , the sample proportion of adults who do not own a credit card
solve for x 50x+ 120 (176-x)= 17340
The cost of unleaded gasoline in the Bay Area once followed an unknown distribution with a mean of $4.59 and a standard deviation of $0.10. Sixteen gas stations from the Bay Area are randomly chosen. We are interested in the average cost of gasoline for the 16 gas stations. 84. Find the probability that the average price for 30 gas stations is less than $4.55. a 0.6554 b 0.3446 c 0.0142 d 0.9858 e 0
In the telephone exchange of a certain university, calls come in at a rate of 5 every 2 minutes. Assuming a Poisson distribution, the average number of calls per second is: a) 1/8 b) 1/12 c) 1/10 d) 2/5 e) 1/24
A circular window has a rubber molding around the edge. If the window has a radius of 250 mm, how long is the piece of molding that is required ? (To the nearest mm)
0.1x8.2
If the regression equation is given by 4x –y + 5 = 0, then the slope of regression line of y on x is
Determine a general formula​ (or formulas) for the solution to the following equation.​ Then, determine the specific solutions​ (if any) on the interval [0,2π). cos30=0
Determine the Linear function whose graph passes through the points (6, -2) and has slope 3.
5a-3.(a-7)=-3
2p-6=8+5(p+9)
Mark is gluing a ribbon around the sides of a picture frame. The frame is 11 inches long and 7 includes wide. How much ribbon does Mark need?
x(squared) -8x=0