Question

Check if vector u vector v vector w are LI OR LD A)vector u=(1,2,1) vector v=(1,-1,-7) and vector w=(4,5,-4) B)vector u=(1,-1,2) vector v=(-3,4,1) and vector w=(1,0,9) C)vector u=(7,6,1) vector v=(2,0,1) and vector w=(1,-2,1)

121

likes
604 views

Answer to a math question Check if vector u vector v vector w are LI OR LD A)vector u=(1,2,1) vector v=(1,-1,-7) and vector w=(4,5,-4) B)vector u=(1,-1,2) vector v=(-3,4,1) and vector w=(1,0,9) C)vector u=(7,6,1) vector v=(2,0,1) and vector w=(1,-2,1)

Expert avatar
Jett
4.7
97 Answers
Verifique se vetor \mathbf{u}, vetor \mathbf{v} e vetor \mathbf{w} são LI OU LD

A) vetor \mathbf{u}=(1,2,1), vetor \mathbf{v}=(1,-1,-7) e vetor \mathbf{w}=(4,5,-4)
B) vetor \mathbf{u}=(1,-1,2), vetor \mathbf{v}=(-3,4,1) e vetor \mathbf{w}=(1,0,9)
C) vetor \mathbf{u}=(7,6,1), vetor \mathbf{v}=(2,0,1) e vetor \mathbf{w}=(1,-2,1)

\[Solution\]

A) LI
B) LI
C) LI

\[Step-by-Step\]

A) Para verificar se $\mathbf{u}$, $\mathbf{v}$ e $\mathbf{w}$ são linearmente independentes (LI), montamos a matriz $A$ com os vetores $\mathbf{u}$, $\mathbf{v}$ e $\mathbf{w}$ como colunas e verificamos se a determinante de $A$ é diferente de zero:
A = \begin{pmatrix}1 & 1 & 4 \\2 & -1 & 5 \\1 & -7 & -4\end{pmatrix}
\text{Det}(A) = 1 \cdot (-1 \cdot (-4) - 5 \cdot (-7)) - 1 \cdot (2 \cdot (-4) - 5 \cdot 1) + 4 \cdot (2 \cdot (-7) - (-1) \cdot 1) = 1 \cdot (4 + 35) - 1 \cdot (-8 - 5) + 4 \cdot (-14 + 1) = 1 \cdot 39 + 1 \cdot 13 + 4 \cdot (-13) = 39 + 13 - 52 = 0
\text{Det}(A) = 0 \\
Como o determinante é igual a zero, os vetores são linearmente dependentes.

B) Para verificar se $\mathbf{u}$, $\mathbf{v}$ e $\mathbf{w}$ são linearmente independentes (LI), montamos a matriz $A$ com os vetores $\mathbf{u}$, $\mathbf{v}$ e $\mathbf{w}$ como colunas e verificamos se a determinante de $A$ é diferente de zero:
A = \begin{pmatrix}1 & -3 & 1 \\-1 & 4 & 0 \\2 & 1 & 9\end{pmatrix}
\text{Det}(A) = 1 \cdot (4 \cdot 9 - 1 \cdot 0) - (-3) \cdot (-1 \cdot 9 - 2 \cdot 0) + 1 \cdot (-1 \cdot 1 - 4 \cdot 2) = 1 \cdot (36) - (-3) \cdot (-9) + 1 \cdot (-1 - 8) = 36 - 27 - 9 = 0
\text{Det}(A) = 0 \\
Como o determinante é igual a zero, os vetores são linearmente dependentes.

C) Para verificar se $\mathbf{u}$, $\mathbf{v}$ e $\mathbf{w}$ são linearmente independentes (LI), montamos a matriz $A$ com os vetores $\mathbf{u}$, $\mathbf{v}$ e $\mathbf{w}$ como colunas e verificamos se a determinante de $A$ é diferente de zero:
A = \begin{pmatrix}7 & 2 & 1 \\6 & 0 & -2 \\1 & 1 & 1\end{pmatrix}
\text{Det}(A) = 7 \cdot (0 \cdot 1 - -2 \cdot 1) - 2 \cdot (6 \cdot 1 - 1 \cdot 1) + 1 \cdot (6 \cdot 1 - 0 \cdot 1) = 7 \cdot (2) - 2 \cdot (6 - 1) + 1 \cdot (6) = 14 - 10 + 6 = 10
\text{Det}(A) = 10 \\
Como o determinante é diferente de zero, os vetores são linearmente independentes.

Frequently asked questions (FAQs)
What is the slope of the line passing through (2,5) and (4,9)?
+
What is the dot product of vectors A = (3, -2) and B = (-4, 5)?
+
What is the sum of the mixed numbers 2 1/4 and 3 3/5?
+
New questions in Mathematics
Kayla has $8,836.00 in her savings account. The bank gives Kayla 5%of the amount of money in account as a customer bonus. What amount of money does the bank give Kayla? Justify your answer on a 6th grade level.
what is the annual rate on ​$525 at 0.046​% per day for 3 months?
Log(45)
2x2 and how much?
(5y 9)-(y 7)
How many anagrams of the word STROMEC there that do not contain STROM, MOST, MOC or CEST as a subword? By subword is meant anything that is created by omitting some letters - for example, the word EMROSCT contains both MOC and MOST as subwords.
solve for x 50x+ 120 (176-x)= 17340
4+168×10³×d1+36×10³×d2=-12 -10+36×10³×d1+72×10³×d2=0
The population of Pittsburgh, Pennsylvania, fell from 520,117 in 1970 to 305,704 in 2010. Write an exponential function P(t) modeling the population t years after 1970. Round the growth factor to the nearest tem thousandth.
viii. An ac circuit with a 80 μF capacitor in series with a coil of resistance 16Ω and inductance 160mH is connected to a 100V, 100 Hz supply is shown below. Calculate 7. the inductive reactance 8. the capacitive reactance 9. the circuit impedance and V-I phase angle θ 10. the circuit current I 11. the phasor voltages VR, VL, VC and VS 12. the resonance circuit frequency Also construct a fully labeled and appropriately ‘scaled’ voltage phasor diagram.
In an economy with C= 10+0.8 Yd ; I= 20+0.1Y ; G= 100 ; X= 20 ; M=10+0.2Y ; T=-10+0.2Y and R= 10, when knew that Yd= Y-T+R. How much is the budget? A. -23.18 B. -28.13 C. -13.28 D. -32.18
A 20,000 kg school bus is moving at 30 km per hour on a straight road. At that moment, it applies the brakes until it comes to a complete stop after 15 seconds. Calculate the acceleration and the force acting on the body.
94 divided by 8.75
You buy a $475,000 house and put 15% down. If you take a 20 year amortization and the rate is 2.34%, what would the monthly payment be?
What is the total amount due and the amount of interest on a 3-year loan of $1,000 at a simple interest rate of 12% per year?
Let N be the total number of ways to choose at least one ride, out of a total of 7 different ones, existing in an amusement park. Can it be said that N is a natural number equal to?
2.3 X 0.8
How many digits are there in Hindu-Arabic form of numeral 26 × 1011
Define excel and why we use it?
6(k-7) -2=5