**
1. **Normalización de \mathbf{u}**:
El vector \mathbf{u} = (3,4) se normaliza de la siguiente forma:
\|\mathbf{u}\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5
Entonces, el vector unitario es:
\mathbf{\hat{u}} = \left( \frac{3}{5}, \frac{4}{5} \right)
2. **Cálculo del gradiente \nabla f**:
- Derivada parcial respecto a x:
\frac{\partial f}{\partial x} = \frac{\partial}{\partial x}(3x^2 - 4y^2) = 6x
- Derivada parcial respecto a y:
\frac{\partial f}{\partial y} = \frac{\partial}{\partial y}(3x^2 - 4y^2) = -8y
Entonces,
\nabla f(x, y) = (6x, -8y)
3. **Evaluación del gradiente en el punto (1, -1)**:
\nabla f(1, -1) = (6 \cdot 1, -8 \cdot (-1)) = (6, 8)
4. **Cálculo de la derivada direccional**:
La derivada direccional en la dirección de \mathbf{\hat{u}} es el producto escalar:
D_{\mathbf{\hat{u}}}f(1, -1) = \nabla f(1, -1) \cdot \mathbf{\hat{u}} = (6, 8) \cdot \left( \frac{3}{5}, \frac{4}{5} \right)
= 6 \cdot \frac{3}{5} + 8 \cdot \frac{4}{5}
= \frac{18}{5} + \frac{32}{5}
= \frac{50}{5} = 10
La derivada direccional es 10.