1. Differentiate \(x^3\) with respect to \(x\):
\frac{d}{dx}(x^3) = 3x^2
2. Differentiate \(xy^2\) using the product rule:
\frac{d}{dx}(xy^2) = y^2 + 2xy \frac{dy}{dx}
3. Differentiate \(5x\) with respect to \(x\):
\frac{d}{dx}(5x) = 5
Combine all terms:
3x^2 + y^2 + 2xy \frac{dy}{dx} = 5
Solve for \(\frac{dy}{dx}\):
2xy \frac{dy}{dx} = 5 - 3x^2 - y^2
\frac{dy}{dx} = \frac{5 - 3x^2 - y^2}{2xy}
Answer:
\frac{dy}{dx} = \frac{5 - 3x^2 - y^2}{2xy}