To find the term \(a_{14}\) in an arithmetic sequence where the first term \(a_1 = 8\) and the common difference \(d = \frac{1}{4}\), we use the formula for the \(n\)-th term of an arithmetic sequence, which is:
a_n = a_1 + (n-1)d
Therefore, to find the 14th term (\(a_{14}\)):
a_{14} = 8 + (14-1)\frac{1}{4}
a_{14} = 8 + 13 \cdot \frac{1}{4}
a_{14} = 8 + \frac{13}{4}
a_{14} = 8 + 3.25
a_{14} = 11.25
\[Solution\]
a_{14} = 11.25
\[Step-by-Step\]
1. Use the formula for the \(n\)-th term of an arithmetic sequence:
a_n = a_1 + (n-1)d
2. Plug in \(a_1 = 8\), \(d = \frac{1}{4}\), and \(n = 14\):
a_{14} = 8 + (14-1) \cdot \frac{1}{4}
3. Simplify the expression inside the parentheses:
a_{14} = 8 + 13 \cdot \frac{1}{4}
4. Multiply:
a_{14} = 8 + \frac{13}{4}
5. Convert the whole number to fraction and add:
a_{14} = \frac{32}{4} + \frac{13}{4} = \frac{45}{4}
6. Finally, convert back to a decimal:
a_{14} = 11.25
\[Solution\]
a_{14} = 11.25