1. Calculate the molar mass of \( \text{H}_2\text{O}_2 \) and \( \text{O}_2 \).
- \( \text{Molecular weight of } \text{H}_2\text{O}_2 = 2(1.01) + 2(16.00) = 34.02 \) g/mol
- \( \text{Molecular weight of } \text{O}_2 = 2(16.00) = 32.00 \) g/mol
2. Calculate moles of \( \text{H}_2\text{O}_2 \) reacted.
\text{Moles of } \text{H}_2\text{O}_2 = \frac{9.00 \text{ g}}{34.02 \text{ g/mol}} = 0.2646 \text{ mol}
3. Based on the balanced equation, find moles of \( \text{O}_2 \) expected.
- From stoichiometry: \(2 \text{ mol } \text{H}_2\text{O}_2 \Rightarrow 1 \text{ mol } \text{O}_2\)
- Expected moles of \( \text{O}_2 = 0.2646 \div 2 = 0.1323 \text{ mol} \)
4. Convert moles of \( \text{O}_2 \) to grams.
\text{Grams of expected } \text{O}_2 = 0.1323 \text{ mol} \times 32.00 \text{ g/mol} = 4.2336 \text{ g}
5. Calculate percent yield.
\text{Percent yield} = \left(\frac{4.00 \text{ g}}{4.2336 \text{ g}}\right) \times 100\% = 94.441\%
6. Round to the nearest 0.1\%
- The reaction has a 94.1\% yield.