Question

In a diamond ABCD, we draw the segment BN perpendicular to the segment AD, the segment BM perpendicular to CD, the segment DR perpendicular to AB and the segment DQ perpendicular to BC. The perpendiculars BN and DR intersect at point E and the perpendiculars BM and DQ intersect at point F. Demonstrate using Euclidean geometry that BEDF is a rhombus and that its angles are isometric to the angles of rhombus ABCD.

65

likes
327 views

Answer to a math question In a diamond ABCD, we draw the segment BN perpendicular to the segment AD, the segment BM perpendicular to CD, the segment DR perpendicular to AB and the segment DQ perpendicular to BC. The perpendiculars BN and DR intersect at point E and the perpendiculars BM and DQ intersect at point F. Demonstrate using Euclidean geometry that BEDF is a rhombus and that its angles are isometric to the angles of rhombus ABCD.

Expert avatar
Esmeralda
4.7
98 Answers
Pour démontrer que BEDF est un losange et que ses angles sont isométriques aux angles du losange ABCD, nous pouvons utiliser la géométrie euclidienne et les informations données. Commençons par analyser la figure donnée et les propriétés des lignes et segments mentionnés. 1. Nous avons une figure ABCD en forme de losange, où AD et BC sont des perpendiculaires égales au segment de droite AB. 2. Le segment BN est perpendiculaire à AD et le segment DR est perpendiculaire à AB. Ces perpendiculaires se coupent au point E. 3. Le segment BM est perpendiculaire à CD et le segment DQ est perpendiculaire à BC. Ces perpendiculaires se coupent au point F. Montrons maintenant que BEDF est un losange : 1. Pour montrer que BEDF est un losange, nous devons prouver que les quatre côtés sont congrus. un. Puisque BN et DR sont respectivement perpendiculaires à AD et AB, ils sont tous deux médiateurs perpendiculaires de AB. Cela signifie que le point E se trouve sur la médiatrice de AB et que la distance de E à A et B est égale. De même, le point F se trouve sur la médiatrice de AB et la distance de F à A et B est égale. b. On peut donc conclure que BE = EA = DF = FA. 2. Pour montrer que les angles de BEDF sont isométriques aux angles de ABCD, nous devons prouver que les angles correspondants sont congrus. un. Puisque BN est perpendiculaire à AD et BM est perpendiculaire à CD, l’angle BNE et l’angle BMF sont tous deux des angles droits. b. De même, puisque DR est perpendiculaire à AB et DQ est perpendiculaire à BC, l’angle DRE et l’angle DQF sont tous deux des angles droits. c. On peut donc conclure que angle BNE = angle BMF = angle DRE = angle DQF. Sur la base des preuves ci-dessus, nous pouvons conclure que BEDF est un losange, car ses quatre côtés sont congrus et ses angles sont isométriques aux angles du losange ABCD.

Frequently asked questions (FAQs)
What is the domain of the trigonometric function f(x) = sin(2x) + cos(x) + tan(x) for x located in the interval [0, π/2]?
+
Math Question: Solve the inequality 3x + 5 > 14 for x, where x represents a real number. (
+
What is the standard deviation of a dataset with values: 4, 6, 8, 10, 12?
+
New questions in Mathematics
find the value of the tangent if it is known that the cos@= 1 2 and the sine is negative. must perform procedures.
The actual length of an object is 1.3 m . If the blueprint uses a scale of 1 : 12 , what is the length of the line on the drawing?
You are planning to buy a car worth $20,000. Which of the two deals described below would you choose, both with a 48-month term? (NB: estimate the monthly payment of each offer). i) the dealer offers to take 10% off the price, then lend you the balance at an annual percentage rate (APR) of 9%, monthly compounding. ii) the dealer offers to lend you $20,000 (i.e., no discount) at an APR of 3%, monthly compounding.
-4y-6(2z-4y)-6
how many arrangements can be made of 4 letters chosen from the letters of the world ABSOLUTE in which the S and U appear together
prove that if n odd integer then n^2+5 is even
Solve the following equation for x in exact form and then find the value to the nearest hundredths (make sure to show your work): 5e3x – 3 = 25
From 1975 through 2020 the mean annual gain of the Dow Jones Industrial Average was 652. A random sample of 34 years is selected from this population. What is the probability that the mean gain for the sample was between 400 and 800? Assume the standard deviation is 1539
392929-9
Take the limit of (sin(x-4))/(tan(x^2 - 16) as x approaches 4.
viii. An ac circuit with a 80 μF capacitor in series with a coil of resistance 16Ω and inductance 160mH is connected to a 100V, 100 Hz supply is shown below. Calculate 7. the inductive reactance 8. the capacitive reactance 9. the circuit impedance and V-I phase angle θ 10. the circuit current I 11. the phasor voltages VR, VL, VC and VS 12. the resonance circuit frequency Also construct a fully labeled and appropriately ‘scaled’ voltage phasor diagram.
7- A printing company found in its investigations that there were an average of 6 errors in 150-page prints. Based on this information, what is the probability of there being 48 errors in a 1200-page job?
The blood types of individuals in society are as follows: A: 30%, B: 25%, AB: 20%, 0: 25%. It is known that the rates of contracting a certain disease according to blood groups are as follows: A: 7%, B: 6%, AB: 7%, 0: 4%. Accordingly, if a person selected by chance is known to have this disease, what is the probability of having blood group O?
2+2020202
The inner radius of a spherical ball is 13 cm. How many liters of air are in it? Justify your answer!
7-1=6 6x2=12 Explain that
The supply of a good registers periodic increases. With each increase in the offer, the total receipts of the bidders increase. Indicate the correct statement: a) demand is elastic b) demand is inelastic c) supply is inelastic d) supply has unit elasticity.
13/25+7/16
Find the rule that connects the first number to the second number of each pair. Apply the rule to find the missing number in the third pair. (18 is to 22) (54 is to 26) (9 is to ?)
In a cheese factory, one pie costs 3800 denars. The fixed ones costs are 1,200,000 denars, and variable costs are 2,500 denars per pie. To encounter: a) income functions. profit and costs; b) the break-even point and profit and loss intervals.