Question

In a diamond ABCD, we draw the segment BN perpendicular to the segment AD, the segment BM perpendicular to CD, the segment DR perpendicular to AB and the segment DQ perpendicular to BC. The perpendiculars BN and DR intersect at point E and the perpendiculars BM and DQ intersect at point F. Demonstrate using Euclidean geometry that BEDF is a rhombus and that its angles are isometric to the angles of rhombus ABCD.

65

likes
327 views

Answer to a math question In a diamond ABCD, we draw the segment BN perpendicular to the segment AD, the segment BM perpendicular to CD, the segment DR perpendicular to AB and the segment DQ perpendicular to BC. The perpendiculars BN and DR intersect at point E and the perpendiculars BM and DQ intersect at point F. Demonstrate using Euclidean geometry that BEDF is a rhombus and that its angles are isometric to the angles of rhombus ABCD.

Expert avatar
Esmeralda
4.7
102 Answers
Pour démontrer que BEDF est un losange et que ses angles sont isométriques aux angles du losange ABCD, nous pouvons utiliser la géométrie euclidienne et les informations données. Commençons par analyser la figure donnée et les propriétés des lignes et segments mentionnés. 1. Nous avons une figure ABCD en forme de losange, où AD et BC sont des perpendiculaires égales au segment de droite AB. 2. Le segment BN est perpendiculaire à AD et le segment DR est perpendiculaire à AB. Ces perpendiculaires se coupent au point E. 3. Le segment BM est perpendiculaire à CD et le segment DQ est perpendiculaire à BC. Ces perpendiculaires se coupent au point F. Montrons maintenant que BEDF est un losange : 1. Pour montrer que BEDF est un losange, nous devons prouver que les quatre côtés sont congrus. un. Puisque BN et DR sont respectivement perpendiculaires à AD et AB, ils sont tous deux médiateurs perpendiculaires de AB. Cela signifie que le point E se trouve sur la médiatrice de AB et que la distance de E à A et B est égale. De même, le point F se trouve sur la médiatrice de AB et la distance de F à A et B est égale. b. On peut donc conclure que BE = EA = DF = FA. 2. Pour montrer que les angles de BEDF sont isométriques aux angles de ABCD, nous devons prouver que les angles correspondants sont congrus. un. Puisque BN est perpendiculaire à AD et BM est perpendiculaire à CD, l’angle BNE et l’angle BMF sont tous deux des angles droits. b. De même, puisque DR est perpendiculaire à AB et DQ est perpendiculaire à BC, l’angle DRE et l’angle DQF sont tous deux des angles droits. c. On peut donc conclure que angle BNE = angle BMF = angle DRE = angle DQF. Sur la base des preuves ci-dessus, nous pouvons conclure que BEDF est un losange, car ses quatre côtés sont congrus et ses angles sont isométriques aux angles du losange ABCD.

Frequently asked questions (FAQs)
Math question: Solve for x: 2x + 5 = 19
+
What is the length of the hypotenuse if the adjacent side measures 10 units and the angle measures 45 degrees?
+
Math question: What is the integral of f(x) = 3x^2 + 5x + 2 using the power rule for integration?
+
New questions in Mathematics
The sum of an infinite geometric series is 13,5 The sum of the same series, calculated from the third term is 1,5. Q. Calculate r if r>0.
Consider the relation R defined on the set of positive integers as (x,y) ∈ R if x divides y. Choose all the true statements. R is reflexive. R is symmetric. R is antisymmetric. R is transitive. R is a partial order. R is a total order. R is an equivalence relation.
Use the elimination to find the solution to each linear system. X+y=43 2x-y=20
A company is wondering whether to invest £18,000 in a project which would make extra profits of £10,009 in the first year, £8,000 in the second year and £6,000 in the third year. It’s cost of capital is 10% (in other words, it would require a return of at least 10% on its investment). You are required to evaluate the project.
(6.2x10^3)(3x10^-6)
Determine the absolute extrema of the function 𝑓(𝑥)=𝑥3−18𝑥2 96𝑥 , on the interval [1,10]
Find the root of x^4-10x^ 5=0 using Newton's method, with a precision of the smallest positive root.
You are planning to buy a car worth $20,000. Which of the two deals described below would you choose, both with a 48-month term? (NB: estimate the monthly payment of each offer). i) the dealer offers to take 10% off the price, then lend you the balance at an annual percentage rate (APR) of 9%, monthly compounding. ii) the dealer offers to lend you $20,000 (i.e., no discount) at an APR of 3%, monthly compounding.
2x2 and how much?
A person borrows rm 1000 from a bank at an interest rate of 10%. After some time, he pays the bank rm 1900 as full and final settlement of the loan. Estimate the duration of his loan.
4x/2+5x-3/6=7/8-1/4-x
The cost of unleaded gasoline in the Bay Area once followed an unknown distribution with a mean of $4.59 and a standard deviation of $0.10. Sixteen gas stations from the Bay Area are randomly chosen. We are interested in the average cost of gasoline for the 16 gas stations. 84. Find the probability that the average price for 30 gas stations is less than $4.55. a 0.6554 b 0.3446 c 0.0142 d 0.9858 e 0
Find all real numbers x that satisfy the equation \sqrt{x^2-2}=\sqrt{3-x}
Fill in the P(X-x) values to give a legitimate probability distribution for the discrete random variable X, whose possible values are -5 ,3 , 4, 5 , and 6.
In poker, a full house consists of five cards, where two of the cards have the same number (or letter) and the remaining three also have the same number (or letter) as each other (but not as the previous two cards). Use a search engine or Wikipedia to understand the concept better if necessary. In how many different ways can one obtain a full house?
The area bounded by the curve y=ln(x) and the lines x=1 and x=4 above the x−axis is
Below are three 95% CIs (where 𝜎 was known and 𝑥̅happened to be the same); one with sample size 30, one with samplesize 40, and one with sample size 50. Which is which?(66.2, 76.2)(61.2, 81.2)(56.2, 86.2)
a) 6x − 5 > x + 20
7-1=6 6x2=12 Explain that
If the area of a circle is 75.7ft2, what is the radius? Give the answer in metres. Round answer to 2 decimal places and enter the units.