Question

: The pieces of the Triangular Curvica are obtained from a triangle equilateral of which we can choose to hollow, bulge or leave as is each side. 1) Which room has the smallest perimeter? 2) Name the room that has the same perimeter as room C. 3) Name the parts whose area is less than the area of part A. Ex bonus: Dice are cubes whose faces are numbered according to the following rule: the sum points appearing on two opposite faces must always be equal to 7. You see on the right two dice stacked together on others. Die 1 has four dots on its upper side. How many points are there in total on the three horizontal faces that you cannot no see ?

142

likes
710 views

Answer to a math question : The pieces of the Triangular Curvica are obtained from a triangle equilateral of which we can choose to hollow, bulge or leave as is each side. 1) Which room has the smallest perimeter? 2) Name the room that has the same perimeter as room C. 3) Name the parts whose area is less than the area of part A. Ex bonus: Dice are cubes whose faces are numbered according to the following rule: the sum points appearing on two opposite faces must always be equal to 7. You see on the right two dice stacked together on others. Die 1 has four dots on its upper side. How many points are there in total on the three horizontal faces that you cannot no see ?

Expert avatar
Gene
4.5
108 Answers
1) Pour déterminer quelle pièce a le plus petit périmètre, nous devons examiner les différentes options de creusement, de bombement ou de laisser en l'état pour chaque côté.
Le périmètre d'une pièce est égal à la somme des longueurs de ses côtés.

Supposons que la longueur d'un côté du triangle équilatéral de départ soit représentée par la variable $l$.
Si nous creusons un côté, nous retirons une certaine longueur de ce côté. Supposons que cette longueur retirée soit représentée par la variable $x$.
Si nous bombons un côté, nous ajoutons une certaine longueur à ce côté. Supposons que cette longueur ajoutée soit également représentée par la variable $x$.
Si nous laissons un côté en l'état, sa longueur reste la même.

Pour chaque côté, nous avons donc les options suivantes:
- Option creusée: $l - x$
- Option bombée: $l + x$
- Option laissée en l'état: $l$

1) Pour la pièce ayant le plus petit périmètre, il faut choisir l'option avec la plus petite valeur pour chaque côté.
Donc, pour chaque côté, nous devons choisir entre $l - x$, $l + x$ et $l$, en fonction des valeurs de $x$.

2) Pour déterminer quelle pièce a le même périmètre que la pièce C, nous devons considérer les options choisies pour chaque côté de la pièce C.
Une fois que nous connaissons ces options, nous pouvons calculer le périmètre de la pièce C.
Ensuite, nous devons trouver quelle autre pièce a le même périmètre.

3) Pour trouver les pièces ayant une aire inférieure à l'aire de la pièce A, nous devons d'abord calculer l'aire de la pièce A.
Ensuite, nous devons comparer cette aire avec l'aire de chaque autre pièce pour identifier celles qui ont une aire inférieure.

Ex bonus:
Pour déterminer le nombre total de points sur les trois faces horizontales des dés que vous ne pouvez pas voir, nous devons examiner leur disposition et utiliser la règle de la somme des points sur des faces opposées.

Answer:
1) La détermination des pièces avec le plus petit périmètre dépend des options choisies pour chaque côté et nécessite des valeurs pour $l$ et $x$.
2) Pour nommer la pièce qui a le même périmètre que la pièce C, il faut connaître les options choisies pour chaque côté de la pièce C.
3) Pour nommer les pièces ayant une aire inférieure à l'aire de la pièce A, il faut connaître l'aire de la pièce A et comparer cette aire avec celle des autres pièces.
Ex bonus: Pour déterminer le nombre total de points sur les trois faces horizontales des dés invisibles, il faut examiner leur disposition et utiliser la règle de la somme des points sur des faces opposées.

Frequently asked questions (FAQs)
Math question: Find the limit as x approaches 1 of (x^2 - 1) / (x - 1) using L'Hospital's Rule.
+
Question: What are the five axioms of Euclidean geometry?
+
Find the length of the side adjacent to an angle of 45° when the hypotenuse is 10 units long.
+
New questions in Mathematics
(x^2+3x)/(x^2-9)=
1 plus 1
The bus one way of the road which is 10km is heading with speed of 20km/h ,then the bus the other 10km is heading with speed of 60km/h. The middle speed of the road is it equal with arithmetic speed of the v1 and v2 ?
If eight basketball teams participate in a tournament, find the number of different ways that first, second, and third places can be decided assuming that no ties are allowed.
If f(x,y)=6xy^2+3y^3 find (∫3,-2) f(x,y)dx.
Substitute a=2 and b=-3 and c=-4 to evaluate 2ac/(-2b^2-a)
show step by step simplification: (¬𝑑∨((¬b∧c)∨(b∧¬c)))∧((𝑎 ∧ 𝑏) ∨ (¬𝑎 ∧ ¬𝑏))∧(¬𝑐∨((¬𝑑∧𝑎)∨(𝑑∧¬𝑎)))
In a order to compare the means of two populations, independent random samples of 410 observations are selected from each population, with Sample 1 the results found in the table to the right. Complete parts a through e below. X1 = 5,319 S1= 143 a. Use a 95% confidence interval to estimate the difference between the population means (H - H2) Interpret the contidence interval. The contidence interval IS (Round to one decimal place as needed.) Sample 2 X2 = 5,285 S2 = 198 Aa. Use a 95% confidence interval to estimate the difference between the population means (A1 - M2) Interpret the contidence interval. The contidence interval Is (Round to one decimal place as needed.) b. Test the null hypothesis Ho versus alternative hypothesis Ha (H What is the test statistic? H2) + Give the significance level of the test, and interpret the result. Use a = 0.05. Z=
A stunt man jumps horizontally from a building to the roof of a garage that is 2 meters lower. How fast does he need to be to land on the roof of the said garage that is 3 meters away from the building?
3 A tree is planted when it is 1.2 m tall. Every year its growth is 3/8 of its previous year's height. Find how tall the tree will grow.
P(Z<z)=0.1003
Find the center coordinates and radius of a circle for an equation written as: 3x2 + 3y2 - 6y = —12× + 24
7.57 Online communication. A study suggests that the average college student spends 10 hours per week communicating with others online. You believe that this is an underestimate and decide to collect your own sample for a hypothesis test. You randomly sample 60 students from your dorm and find that on average they spent 13.5 hours a week communicating with others online. A friend of yours, who offers to help you with the hypothesis test, comes up with the following set of hypotheses. Indicate any errors you see. H0 :x ̄<10hours HA : x ̄ > 13.5 hours
48 kg of 30% sulfuric acid in a mixture of 10% and 40% sulfuric acid arose. How many kilograms were each of the original solutions?
-5x=115
How many cards do you expect to pull from a poker deck until you get an ACE?
If sin A=0.3 and cos A=0.6, determine the value of tan A.
A membership to the gym cost $25 per person in 1995. The membership cost has increased by an average $6 per person for each year since 1995. Write a linear equation for the cost of a gym membership for one person since 1995. What is the cost of a gym membership in 2009?
write in set builder notation { 1,3,9,27,81,243,...}
A plant found at the bottom of a lake doubles in size every 10 days. Yeah It is known that in 300 days it has covered the entire lake, indicate how many days it will take to cover the entire lake four similar plants.