Question

: The pieces of the Triangular Curvica are obtained from a triangle equilateral of which we can choose to hollow, bulge or leave as is each side. 1) Which room has the smallest perimeter? 2) Name the room that has the same perimeter as room C. 3) Name the parts whose area is less than the area of part A. Ex bonus: Dice are cubes whose faces are numbered according to the following rule: the sum points appearing on two opposite faces must always be equal to 7. You see on the right two dice stacked together on others. Die 1 has four dots on its upper side. How many points are there in total on the three horizontal faces that you cannot no see ?

142

likes
710 views

Answer to a math question : The pieces of the Triangular Curvica are obtained from a triangle equilateral of which we can choose to hollow, bulge or leave as is each side. 1) Which room has the smallest perimeter? 2) Name the room that has the same perimeter as room C. 3) Name the parts whose area is less than the area of part A. Ex bonus: Dice are cubes whose faces are numbered according to the following rule: the sum points appearing on two opposite faces must always be equal to 7. You see on the right two dice stacked together on others. Die 1 has four dots on its upper side. How many points are there in total on the three horizontal faces that you cannot no see ?

Expert avatar
Gene
4.5
108 Answers
1) Pour déterminer quelle pièce a le plus petit périmètre, nous devons examiner les différentes options de creusement, de bombement ou de laisser en l'état pour chaque côté.
Le périmètre d'une pièce est égal à la somme des longueurs de ses côtés.

Supposons que la longueur d'un côté du triangle équilatéral de départ soit représentée par la variable $l$.
Si nous creusons un côté, nous retirons une certaine longueur de ce côté. Supposons que cette longueur retirée soit représentée par la variable $x$.
Si nous bombons un côté, nous ajoutons une certaine longueur à ce côté. Supposons que cette longueur ajoutée soit également représentée par la variable $x$.
Si nous laissons un côté en l'état, sa longueur reste la même.

Pour chaque côté, nous avons donc les options suivantes:
- Option creusée: $l - x$
- Option bombée: $l + x$
- Option laissée en l'état: $l$

1) Pour la pièce ayant le plus petit périmètre, il faut choisir l'option avec la plus petite valeur pour chaque côté.
Donc, pour chaque côté, nous devons choisir entre $l - x$, $l + x$ et $l$, en fonction des valeurs de $x$.

2) Pour déterminer quelle pièce a le même périmètre que la pièce C, nous devons considérer les options choisies pour chaque côté de la pièce C.
Une fois que nous connaissons ces options, nous pouvons calculer le périmètre de la pièce C.
Ensuite, nous devons trouver quelle autre pièce a le même périmètre.

3) Pour trouver les pièces ayant une aire inférieure à l'aire de la pièce A, nous devons d'abord calculer l'aire de la pièce A.
Ensuite, nous devons comparer cette aire avec l'aire de chaque autre pièce pour identifier celles qui ont une aire inférieure.

Ex bonus:
Pour déterminer le nombre total de points sur les trois faces horizontales des dés que vous ne pouvez pas voir, nous devons examiner leur disposition et utiliser la règle de la somme des points sur des faces opposées.

Answer:
1) La détermination des pièces avec le plus petit périmètre dépend des options choisies pour chaque côté et nécessite des valeurs pour $l$ et $x$.
2) Pour nommer la pièce qui a le même périmètre que la pièce C, il faut connaître les options choisies pour chaque côté de la pièce C.
3) Pour nommer les pièces ayant une aire inférieure à l'aire de la pièce A, il faut connaître l'aire de la pièce A et comparer cette aire avec celle des autres pièces.
Ex bonus: Pour déterminer le nombre total de points sur les trois faces horizontales des dés invisibles, il faut examiner leur disposition et utiliser la règle de la somme des points sur des faces opposées.

Frequently asked questions (FAQs)
Math question: What is the value of x in the logarithmic equation log₂(x) + log₄(x) = 3? (
+
What is the equation of a logarithmic function with a base of 2, vertical shift of 3, and a horizontal shift of 4?
+
What is the sine of the angle θ, given that θ = 45 degrees?
+
New questions in Mathematics
In a random sample of 600 families in the Metropolitan Region that have cable television service, it is found that 460 are subscribed to the Soccer Channel (CDF). How large a sample is required to be if we want to be 95% confident that the estimate of “p” is within 0.03?
What payment 7 months from now would be equivalent in value to a $3,300 payment due 23 months from now? The value of money is 2.7% simple interest. Round your answer to 2 decimal places. Show all work and how you arrive at the answer..
solve the following trigo equation for 0°<= x <= 360°. sec x =-2
(2x+5)^3+(x-3)(x+3)
A company that manufactures personal hygiene items purchases machinery for $220,000 that is considered to last 7 years; it is estimated that at the end of the period it will have a salvage value of $1000. Find: to. The depreciation rate. b. The book value at the end of the sixth year.
∫ √9x + 1 dx
Estimate the quotient for 3.24 ÷ 82
TEST 123123+1236ttttt
4+168×10³×d1+36×10³×d2=-12 -10+36×10³×d1+72×10³×d2=0
In a physics degree course, there is an average dropout of 17 students in the first semester. What is the probability that the number of dropouts in the first semester in a randomly selected year has between 13 and 16 students?
2x2
9/14 x 7/27 carry out indicated operation
Let G be the center of gravity of triangle ABC. We draw through A a parallel to BC on which we take a point D so that DG⊥BG. If the area of the quadrilateral AGBD is equal to s, show that AC·BD≥2·s.
To paint a 250 m wall, a number of workers were employed. If the wall were 30 m longer, 9 more workers would be needed. How many were employed at the beginning?
simplify w+[6+(-5)]
4m - 3t + 7 = 16
A candy manufacturer must monitor deviations in the amount of sugar in their products They want their products to meet standards. They selected a random sample of 20 candies and found that the sandard deviation of that sample is 1.7. What is the probabilty of finding a sample variance as high or higher if the population variance is actually 3277 Assume the population distribution is normal.
In a school playground When going out for recess, 80 men and 75 women coexist, the Patio measures 10 meters For 40 meters (what will be the population density in the break
Hola👋🏻 Toca en "Crear Nueva Tarea" para enviar tu problema de matemáticas. ¡Uno de nuestros expertos comenzará a trabajar en ello de inmediato!
An export company grants a bonus of $100,000 pesos to distribute among three of its best employees, so that the first receives double the second and the latter receives triple the third. How much did each person receive?