Question

: The pieces of the Triangular Curvica are obtained from a triangle equilateral of which we can choose to hollow, bulge or leave as is each side. 1) Which room has the smallest perimeter? 2) Name the room that has the same perimeter as room C. 3) Name the parts whose area is less than the area of part A. Ex bonus: Dice are cubes whose faces are numbered according to the following rule: the sum points appearing on two opposite faces must always be equal to 7. You see on the right two dice stacked together on others. Die 1 has four dots on its upper side. How many points are there in total on the three horizontal faces that you cannot no see ?

142

likes
710 views

Answer to a math question : The pieces of the Triangular Curvica are obtained from a triangle equilateral of which we can choose to hollow, bulge or leave as is each side. 1) Which room has the smallest perimeter? 2) Name the room that has the same perimeter as room C. 3) Name the parts whose area is less than the area of part A. Ex bonus: Dice are cubes whose faces are numbered according to the following rule: the sum points appearing on two opposite faces must always be equal to 7. You see on the right two dice stacked together on others. Die 1 has four dots on its upper side. How many points are there in total on the three horizontal faces that you cannot no see ?

Expert avatar
Gene
4.5
108 Answers
1) Pour déterminer quelle pièce a le plus petit périmètre, nous devons examiner les différentes options de creusement, de bombement ou de laisser en l'état pour chaque côté.
Le périmètre d'une pièce est égal à la somme des longueurs de ses côtés.

Supposons que la longueur d'un côté du triangle équilatéral de départ soit représentée par la variable $l$.
Si nous creusons un côté, nous retirons une certaine longueur de ce côté. Supposons que cette longueur retirée soit représentée par la variable $x$.
Si nous bombons un côté, nous ajoutons une certaine longueur à ce côté. Supposons que cette longueur ajoutée soit également représentée par la variable $x$.
Si nous laissons un côté en l'état, sa longueur reste la même.

Pour chaque côté, nous avons donc les options suivantes:
- Option creusée: $l - x$
- Option bombée: $l + x$
- Option laissée en l'état: $l$

1) Pour la pièce ayant le plus petit périmètre, il faut choisir l'option avec la plus petite valeur pour chaque côté.
Donc, pour chaque côté, nous devons choisir entre $l - x$, $l + x$ et $l$, en fonction des valeurs de $x$.

2) Pour déterminer quelle pièce a le même périmètre que la pièce C, nous devons considérer les options choisies pour chaque côté de la pièce C.
Une fois que nous connaissons ces options, nous pouvons calculer le périmètre de la pièce C.
Ensuite, nous devons trouver quelle autre pièce a le même périmètre.

3) Pour trouver les pièces ayant une aire inférieure à l'aire de la pièce A, nous devons d'abord calculer l'aire de la pièce A.
Ensuite, nous devons comparer cette aire avec l'aire de chaque autre pièce pour identifier celles qui ont une aire inférieure.

Ex bonus:
Pour déterminer le nombre total de points sur les trois faces horizontales des dés que vous ne pouvez pas voir, nous devons examiner leur disposition et utiliser la règle de la somme des points sur des faces opposées.

Answer:
1) La détermination des pièces avec le plus petit périmètre dépend des options choisies pour chaque côté et nécessite des valeurs pour $l$ et $x$.
2) Pour nommer la pièce qui a le même périmètre que la pièce C, il faut connaître les options choisies pour chaque côté de la pièce C.
3) Pour nommer les pièces ayant une aire inférieure à l'aire de la pièce A, il faut connaître l'aire de la pièce A et comparer cette aire avec celle des autres pièces.
Ex bonus: Pour déterminer le nombre total de points sur les trois faces horizontales des dés invisibles, il faut examiner leur disposition et utiliser la règle de la somme des points sur des faces opposées.

Frequently asked questions (FAQs)
What is the product of 23 multiplied by 14?
+
What is the scalar result of multiplying vector A with vector B?
+
Math question: Determine the number of turning points and real roots of the cubic function f(x) = x^3.
+
New questions in Mathematics
12-6x=4x+2
Evaluate limx→∞tan−1(x) using that y=tan−1(x) exactly when x=tan(y) . (Hint: Both tan and tan−1 are continuous!)
3x+5y=11 2x-3y=1
Moaz wanted to test whether the level of headache pain (on a scale of 1 – 10) changes after taking Advil. He collected data from 9 participants and calculated the difference in headache pain before and after taking Advil (summarized in the table below). Determine W observed for this test. Difference Scores -2 -4 0 +1 +3 -2 0 -3 -5 Also, What is the degrees of freedom for this test?
-4y-6(2z-4y)-6
A box contains 18 blue balls and 33 white balls. What is the ratio of the blue to white balls?
find f(x) for f'(x)=3x+7
What’s the slope of a tangent line at x=1 for f(x)=x2. We can find the slopes of a sequence of secant lines that get closer and closer to the tangent line. What we are working towards is the process of finding a “limit” which is a foundational topic of calculus.
19) If the temperature of -8°C decreases by 12°C, how much will it be? a)-20°C -4°C c) 4°C d) 20°C
You are the newly appointed transport manager for Super Trucking (Pty) Ltd, which operates as a logistics service provider for various industries throughout southern Africa. One of these vehicles is a 4x2 Rigid Truck and drawbar trailer that covers 48,000 km per year. Use the assumptions below to answer the following questions (show all calculations): Overheads R 176,200 Cost of capital (% of purchase price per annum) 11.25% Annual License Fees—Truck R 16,100 Driver Monthly cost R 18,700 Assistant Monthly cost R 10,500 Purchase price: - Truck R 1,130,000 Depreciation: straight line method Truck residual value 25% Truck economic life (years) 5 Purchase price: Trailer R 370,000 Tyre usage and cost (c/km) 127 Trailer residual value 0% Trailer economic life (years) 10 Annual License Fees—Trailer R 7,700 Fuel consumption (liters/100km) 22 Fuel price (c/liter) 2053 Insurance (% of cost price) 7.5% Maintenance cost (c/km) 105 Distance travelled per year (km) 48000 Truck (tyres) 6 Trailer (tyres) 8 New tyre price (each) R 13,400 Lubricants (% of fuel cost) 2.5% Working weeks 50 Working days 5 days / week Profit margin 25% VAT 15% Q1. Calculate the annual total vehicle costs (TVC)
Use the sample data and confidence level given below to complete parts​ (a) through​ (d). A drug is used to help prevent blood clots in certain patients. In clinical​ trials, among 4336 patients treated with the​ drug, 194 developed the adverse reaction of nausea. Construct a ​99% confidence interval for the proportion of adverse reactions.
A bag has 4 green lollipops, 3 white lollipops, and 1 black lollipop. What is the probability of drawing a white lollipop?
On+January+10+2023+the+CONSTRUCTORA+DEL+ORIENTE+SAC+company+acquires+land+to+develop+a+real estate+project%2C+which+prev%C3% A9+enable+50+lots+for+commercial+use+valued+in+S%2F+50%2C000.00+each+one%2C+the+company+has+as+a+business+model+generate+ cash+flow+through%C3%A9s+of+the+rental%2C+so+47%2C+of+the+50+enabled+lots+are+planned to lease+47%2C+and+ the+rest+will be%C3%A1n+used+by+the+company+for+management%C3%B3n+and+land+control
Which statement best describes the key changes in perspectives on inclusion? An inclusive program must consider the unique experiences of every child and family as well as the child's strengths and needs. There is a shift in thinking about individual programs as "inclusive programs" to thinking about inclusion as something that reflects the cultural influence of the family. There is a greater emphasis on barriers to full participation and the acknowledgement that all children are unique and must be fully and meaningfully engaged in a program. In an inclusive program all participants are accepted by their peers and other members of the community.
1. A jeweler has two gold bars, with 80% purity and the other with 95% purity. How much of each must be melted to obtain a 5 kilo ingot with 86% purity?
y′ = 2x + 3y x′ = 7x − 4y x(0) = 2 y(0) = −1 sisteminin ¸c¨oz¨um¨un¨u bulunuz. (Lineer Denk. Sis.)
Square root of 169 with steps
How many digits are there in Hindu-Arabic form of numeral 26 × 1011
Triangle ABC has AB=AC and angle BAC =X, with X being less than 60 degrees. Point D lies on AB such that CB = CD Point E lies on AC such that CE= DE Determine angle DEC in terms of X
-Please answer to the following questions: What is the price elasticity of demand? Can you explain it in your own words? What is the price elasticity of supply? Can you explain it in your own words? What is the relationship between price elasticity and position on the demand curve? For example, as you move up the demand curve to higher prices and lower quantities, what happens to the measured elasticity? How would you explain that? B-Assume that the supply of low-skilled workers is fairly elastic, but the employers’ demand for such workers is fairly inelastic. If the policy goal is to expand employment for low-skilled workers, is it better to focus on policy tools to shift the supply of unskilled labor or on tools to shift the demand for unskilled labor? What if the policy goal is to raise wages for this group? Explain your answers with supply and demand diagrams. Make sure to properly cite and reference your academic or peer-reviewed sources (minimum 2).