Question

: The pieces of the Triangular Curvica are obtained from a triangle equilateral of which we can choose to hollow, bulge or leave as is each side. 1) Which room has the smallest perimeter? 2) Name the room that has the same perimeter as room C. 3) Name the parts whose area is less than the area of part A. Ex bonus: Dice are cubes whose faces are numbered according to the following rule: the sum points appearing on two opposite faces must always be equal to 7. You see on the right two dice stacked together on others. Die 1 has four dots on its upper side. How many points are there in total on the three horizontal faces that you cannot no see ?

142

likes
710 views

Answer to a math question : The pieces of the Triangular Curvica are obtained from a triangle equilateral of which we can choose to hollow, bulge or leave as is each side. 1) Which room has the smallest perimeter? 2) Name the room that has the same perimeter as room C. 3) Name the parts whose area is less than the area of part A. Ex bonus: Dice are cubes whose faces are numbered according to the following rule: the sum points appearing on two opposite faces must always be equal to 7. You see on the right two dice stacked together on others. Die 1 has four dots on its upper side. How many points are there in total on the three horizontal faces that you cannot no see ?

Expert avatar
Gene
4.5
108 Answers
1) Pour déterminer quelle pièce a le plus petit périmètre, nous devons examiner les différentes options de creusement, de bombement ou de laisser en l'état pour chaque côté.
Le périmètre d'une pièce est égal à la somme des longueurs de ses côtés.

Supposons que la longueur d'un côté du triangle équilatéral de départ soit représentée par la variable $l$.
Si nous creusons un côté, nous retirons une certaine longueur de ce côté. Supposons que cette longueur retirée soit représentée par la variable $x$.
Si nous bombons un côté, nous ajoutons une certaine longueur à ce côté. Supposons que cette longueur ajoutée soit également représentée par la variable $x$.
Si nous laissons un côté en l'état, sa longueur reste la même.

Pour chaque côté, nous avons donc les options suivantes:
- Option creusée: $l - x$
- Option bombée: $l + x$
- Option laissée en l'état: $l$

1) Pour la pièce ayant le plus petit périmètre, il faut choisir l'option avec la plus petite valeur pour chaque côté.
Donc, pour chaque côté, nous devons choisir entre $l - x$, $l + x$ et $l$, en fonction des valeurs de $x$.

2) Pour déterminer quelle pièce a le même périmètre que la pièce C, nous devons considérer les options choisies pour chaque côté de la pièce C.
Une fois que nous connaissons ces options, nous pouvons calculer le périmètre de la pièce C.
Ensuite, nous devons trouver quelle autre pièce a le même périmètre.

3) Pour trouver les pièces ayant une aire inférieure à l'aire de la pièce A, nous devons d'abord calculer l'aire de la pièce A.
Ensuite, nous devons comparer cette aire avec l'aire de chaque autre pièce pour identifier celles qui ont une aire inférieure.

Ex bonus:
Pour déterminer le nombre total de points sur les trois faces horizontales des dés que vous ne pouvez pas voir, nous devons examiner leur disposition et utiliser la règle de la somme des points sur des faces opposées.

Answer:
1) La détermination des pièces avec le plus petit périmètre dépend des options choisies pour chaque côté et nécessite des valeurs pour $l$ et $x$.
2) Pour nommer la pièce qui a le même périmètre que la pièce C, il faut connaître les options choisies pour chaque côté de la pièce C.
3) Pour nommer les pièces ayant une aire inférieure à l'aire de la pièce A, il faut connaître l'aire de la pièce A et comparer cette aire avec celle des autres pièces.
Ex bonus: Pour déterminer le nombre total de points sur les trois faces horizontales des dés invisibles, il faut examiner leur disposition et utiliser la règle de la somme des points sur des faces opposées.

Frequently asked questions (FAQs)
What is the graph of the logarithmic function y = log(x) when x varies from 1 to 10?
+
What is the mode of the following set of numbers: 2, 4, 6, 4, 5?
+
Math question: Find the smallest values of x, y, and z such that x^n + y^n = z^n is satisfied for n>2, known as Fermat’s Last Theorem. (
+
New questions in Mathematics
Add. 7/w²+18w+81 + 1/w²-81
Find the equation of the normal to the curve y=x²+4x-3 at point(1,2)
Kayla has $8,836.00 in her savings account. The bank gives Kayla 5%of the amount of money in account as a customer bonus. What amount of money does the bank give Kayla? Justify your answer on a 6th grade level.
The data set (75, 85, 58, 72, 70, 75) is a random sample from the normal distribution No(µ, σ). Determine a 95% two-sided confidence interval for the mean µ .
Substitute a=2 and b=-3 and c=-4 to evaluate 2ac/(-2b^2-a)
A test has 5 multiple choice questions. Each question has 4 alternatives, only one of which is correct. A student who did not study for the test randomly chooses one alternative for each question.(a) What is the probability of him getting a zero on the test?(b) What is the probability of him getting a three or more? The maximum mark for the test is 5, with each question worth one point.
Find 2 numbers whose sum is 47 and whose subtraction is 13
Lim x → 0 (2x ^ 3 - 10x ^ 7) / 5 * x ^ 3 - 4x )=2
determine the polynomial F of degree 2 that interpolates. f at points (0;1) (2;5) (4;6). calculate F(0.8). Note: Using the polynomial expression with difference operator.
6-35 A recent study by an environmental watchdog determined that the amount of contaminants in Minnesota lakes (in parts per million) it has a normal distribution with a mean of 64 ppm and variance of 17.6. Assume that 35 lakes are randomly selected and sampled. Find the probability that the sample average of the amount of contaminants is a) Greater than 72 ppm. b) Between 64 and 72 ppm. c) Exactly 64 ppm. d) Greater than 94 ppm.
With the aim of identifying the presence of the feline leukemia virus (FeLV), blood samples were collected from cats sent to a private veterinary clinic in the city of Belo Horizonte. Among the animals treated, it was possible to observe that age followed a Normal distribution with a mean of 4.44 years and a standard deviation of 1.09 years. Considering this information, determine the value of the third quartile of the ages of the animals treated at this veterinary clinic. ATTENTION: Provide the answer to exactly FOUR decimal places
Solve the equation: sin(2x) = 0.35 Where 0° ≤ x ≤ 360°. Give your answers to 1 d.p.
30y - y . y = 144
A car travels 211 miles on 15 gallons of gasoline. The best estimate of the car’s miles per gallon is?
Which statement best describes the key changes in perspectives on inclusion? An inclusive program must consider the unique experiences of every child and family as well as the child's strengths and needs. There is a shift in thinking about individual programs as "inclusive programs" to thinking about inclusion as something that reflects the cultural influence of the family. There is a greater emphasis on barriers to full participation and the acknowledgement that all children are unique and must be fully and meaningfully engaged in a program. In an inclusive program all participants are accepted by their peers and other members of the community.
The mass of 120 molecules of X2C4 is 9127.2 amu. Identify the unknown atom, X, by finding the atomic mass. The atomic mass of C is 12.01 amu/atom
Find the symmetric point to a point P = (2,-7,10) with respect to a plane containing a point Po = (3, 2, 2) and perpendicular to a vector u = [1, -3, 2].
2p-6=8+5(p+9)
Find the distance from the point (2,-1) to the line 2x-5y+10=0
Sarah is lining a square tray with 1 inch square tiles. the side length of the tray is 9 inches. How many tiles does Sarah need?