1. Calculate the monthly interest rate:
r = \frac{3\%}{12} = 0.0025
2. Substitute the values into the formula:
M = \frac{34,000 \times 0.0025 \times (1 + 0.0025)^{36}}{(1 + 0.0025)^{36} - 1}
3. Calculate the factor \((1 + 0.0025)^{36}\):
(1 + 0.0025)^{36} \approx 1.093443 \approx 1.093443
4. Substitute this value back into the equation:
M = \frac{34,000 \times 0.0025 \times 1.093443}{1.093443 - 1}
5. Simplify the calculation:
M = \frac{34,000 \times 0.0025 \times 1.093443}{0.093443}
6. Evaluate the expression to find the monthly payment:
M \approx \frac{92.07}{0.093443} \approx 988.76
7. Thus, the monthly payment is approximately:
M \approx 988.76