MathMaster Blog

In a two-dimensional plane, the area of a triangle is defined as the total space filled by its three sides. We should express the area of a triangle in square units m2,cm2,in2,etc.

The basic formula used to find the area of a triangle:

Basic formula

Heron's Formula to calculate the area of a triangle:

When the lengths of the triangle's three sides are known, we should apply Heron's formula to calculate its area. To use this formula, we determine the triangle's perimeter first.

Heron's Formula

When two sides and the included angle are given:

When two sides and the included angle are given

where θ is the angle between the given two sides.

When base and height are given:

When base and height are given

An equilateral triangle with one side given:

An equilateral triangle with one side given

An isosceles triangle with an equal side and base known:

Triangle with an equal side and base known

where b is the base and a is the length of an equal side.

Example 1:

Find the area of a triangle with a base of 8 cm and a height of 7 cm.

Solution:

Area of triangle = 1/2 × b × h

A = 1/2 × 8 × 7

A = 1/2 × 56

Answer: 28 cm2

Example 2:

Find the area of the triangle.

Example triangle

Solution:

Use the formula for calculating a triangle's area A:

½ x base x height

Substitute 14 for b and 10 for h in the formula.

1/2 × 14 × 10

Answer: A = 70

Example 3:

Calculate the area of an equilateral triangle whose each side is 12 in.

Solution:

Use the equilateral triangle area formula:

3/4×(Side)2

= 3/4×(12)2

= 363in2

Answer: 36√3 in^2

Example 4:

What is the area of an equilateral triangle if its perimeter is 30 inches?

  1. 50
  2. 25
  3. 503
  4. 253
  5. 103

Solution:

In an equilateral triangle with a perimeter of 30 inches, each side has a length of 10 inches.

So, we should calculate the area using this formula:

3/4×(Side)2

= 3/4×(10)2=253inch2

Answer: 25√3 inch^2, 4)

Example 5:

Find the base length of an isosceles triangle with an area of 243 cm^2 .

Solution:

Height of the triangle h = 9 cm

The base of the triangle = b =?

We should use the formula 1/2 × b × h to calculate the area of an isosceles triangle.

243 = ½ x b x 9

243 = bx9/2

b = 243x2/9

b = 54 cm

Answer: A = 54 cm

\u003C/p>\r\n\u003Cp>The basic formula used to find the area of a triangle:\u003C/p>\r\n\u003Cimg src=\"https://api.math-master.org/img/tutors/area-of-a-triangle1.webp\" class=\"inner-img\" alt=\"Basic formula\" title=\"Basic formula\">\r\n\u003Cp>Heron's Formula to calculate the area of a triangle:\u003C/p>\r\n\u003Cp>When the lengths of the triangle's three sides are known, we should apply Heron's formula to calculate its area. To use this formula, we determine the triangle's perimeter first.\u003C/p>\r\n\u003Cimg src=\"https://api.math-master.org/img/tutors/area-of-a-triangle2.webp\" class=\"inner-img\" alt=\"Heron's Formula\" title=\"Heron's Formula\">\r\n\u003Cp>When two sides and the included angle are given:\u003C/p>\r\n\u003Cimg src=\"https://api.math-master.org/img/tutors/area-of-a-triangle3.webp\" class=\"inner-img\" alt=\"When two sides and the included angle are given\" title=\"When two sides and the included angle are given\">\r\n\u003Cp>where θ is the angle between the given two sides.\u003C/p>\r\n\u003Cp>When base and height are given:\u003C/p>\r\n\u003Cimg src=\"https://api.math-master.org/img/tutors/area-of-a-triangle4.webp\" class=\"inner-img\" alt=\"When base and height are given\" title=\"When base and height are given\">\r\n\u003Cp>An equilateral triangle with one side given:\u003C/p>\r\n\u003Cimg src=\"https://api.math-master.org/img/tutors/area-of-a-triangle5.webp\" class=\"inner-img\" alt=\"An equilateral triangle with one side given\" title=\"An equilateral triangle with one side given\">\r\n\u003Cp>An isosceles triangle with an equal side and base known:\u003C/p>\r\n\u003Cimg src=\"https://api.math-master.org/img/tutors/area-of-a-triangle6.webp\" class=\"inner-img\" alt=\"Triangle with an equal side and base known\" title=\"Triangle with an equal side and base known\">\r\n\u003Cp>where b is the base and a is the length of an equal side.\u003C/p>\r\n\u003Ch2>Example 1:\u003C/h2>\r\n\u003Cp>Find the area of a triangle with a base of 8 cm and a height of 7 cm.\u003C/p>\r\n\u003Ch3>Solution:\u003C/h3>\r\n\u003Cp>Area of triangle = 1/2 × b × h\u003C/p>\r\n\u003Cp>A = 1/2 × 8 × 7\u003C/p>\r\n\u003Cp>A = 1/2 × 56\u003C/p>\r\n\u003Cp>Answer: 28 cm2\u003C/p>\r\n\u003Ch2>Example 2:\u003C/h2>\r\n\u003Cp>Find the area of the triangle.\u003C/p>\r\n\u003Cimg src=\"https://api.math-master.org/img/tutors/area-of-a-triangle7.webp\" class=\"inner-img\" alt=\"Example triangle\" title=\"Example triangle\">\r\n\u003Ch3>Solution:\u003C/h3>\r\n\u003Cp>Use the formula for calculating a triangle's area A:\u003C/p>\r\n\u003Cp>½ x base x height\u003C/p>\r\n\u003Cp>Substitute 14 for b and 10 for h in the formula.\u003C/p>\r\n\u003Cp>1/2 × 14 × 10\u003C/p>\r\n\u003Cp>Answer: A = 70\u003C/p>\r\n\u003Ch2>Example 3:\u003C/h2>\r\n\u003Cp>Calculate the area of an equilateral triangle whose each side is 12 in.\u003C/p>\r\n\u003Ch3>Solution:\u003C/h3>\r\n\u003Cp>Use the equilateral triangle area formula:\u003C/p>\r\n\u003Cp>sqrt3/4times(Side)2\u003C/p>\r\n\u003Cp>= sqrt3/4times(12)2\u003C/p>\r\n\u003Cp>= 36sqrt3in2\u003C/p>\r\n\u003Cp>Answer: 36√3 in^2\u003C/p>\r\n\u003Ch2>Example 4:\u003C/h2>\r\n\u003Cp>What is the area of an equilateral triangle if its perimeter is 30 inches?\u003C/p>\r\n\u003Col>\r\n \u003Cli>50\u003C/li>\r\n \u003Cli>25\u003C/li>\r\n \u003Cli>50sqrt3\u003C/li>\r\n \u003Cli>25sqrt3\u003C/li>\r\n \u003Cli>10sqrt3\u003C/li>\r\n\u003C/ol>\r\n\u003Ch3>Solution:\u003C/h3>\r\n\u003Cp>In an equilateral triangle with a perimeter of 30 inches, each side has a length of 10 inches.\u003C/p>\r\n\u003Cp>So, we should calculate the area using this formula:\u003C/p>\r\n\u003Cp>sqrt3/4times(Side)2\u003C/p>\r\n\u003Cp>= sqrt3/4times(10)2=25sqrt3inch2\u003C/p>\r\n\u003Cp>Answer: 25√3 inch^2, 4)\u003C/p>\r\n\r\n\u003Ch2>Example 5:\u003C/h2>\r\n\u003Cp>Find the base length of an isosceles triangle with an area of 243 cm^2 .\u003C/p>\r\n\u003Ch3>Solution:\u003C/h3>\r\n\u003Cp>Height of the triangle h = 9 cm\u003C/p>\r\n\u003Cp>The base of the triangle = b =?\u003C/p>\r\n\u003Cp>We should use the formula 1/2 × b × h to calculate the area of an isosceles triangle.\u003C/p>\r\n\u003Cp>243 = ½ x b x 9\u003C/p>\r\n\u003Cp>243 = bx9/2\u003C/p>\r\n\u003Cp>b = 243x2/9\u003C/p>\r\n\u003Cp>b = 54 cm\u003C/p>\r\n\u003Cp>Answer: A = 54 cm\u003C/p>",{"data":157},[158,162,166,170,174,178,182,186,190,194],{"id":159,"post_title":160,"post_slug":161},224,"3 Hardest Math Problems and Equations in the World","3-hardest-math-problems-and-equations-in-the-world",{"id":163,"post_title":164,"post_slug":165},217,"6 Hardest PSAT Math Questions","6-hardest-psat-math-questions",{"id":167,"post_title":168,"post_slug":169},219,"5 Best Math Apps That Solve Math Problems","5-best-math-apps-that-solve-math-problems",{"id":171,"post_title":172,"post_slug":173},203,"Top 6 Best Math Solver Apps for iOS and Android in 2022","top-6-best-math-solver-apps-for-ios-and-android-in-2022",{"id":175,"post_title":176,"post_slug":177},227,"What Is a Prime Number?","what-is-a-prime-number",{"id":179,"post_title":180,"post_slug":181},212,"30 Math Trivia Questions and Answers","30-math-trivia-questions-and-answers",{"id":183,"post_title":184,"post_slug":185},232,"What Is White Rose Maths?","what-is-white-rose-maths",{"id":187,"post_title":188,"post_slug":189},229,"What Are Vertices, Faces, and Edges? A Profound Exploration of Geometric Fundamentals","what-are-vertices-faces-and-edges-a-profound-exploration-of-geometric-fundamentals",{"id":191,"post_title":192,"post_slug":193},213,"Top 5 Hardest ACT Math Questions","top-5-hardest-act-math-questions",{"id":195,"post_title":196,"post_slug":197},215,"8 GRE Math Practice Questions with Explanations","8-gre-math-practice-questions-with-explanations",{"data":199},[200,204,208,211,214,217,220,223],{"id":201,"h1":202,"slug":203},8,"Math Sequence Solver","math-sequence-solver",{"id":205,"h1":206,"slug":207},7,"Math Fill In The Blank Solver","math-fill-in-the-blank-solver",{"id":22,"h1":209,"slug":210},"Math Story Problem Solver","math-story-problem-solver",{"id":6,"h1":212,"slug":213},"Math Word Problem Solver","math-word-problem-solver",{"id":19,"h1":215,"slug":216},"Math Calculus Solver","math-calculus-solver",{"id":10,"h1":218,"slug":219},"Geometry Math Solver","geometry-math-solver",{"id":16,"h1":221,"slug":222},"Best Math Problem Solver App","best-math-problem-solver-app",{"id":13,"h1":224,"slug":225},"Math Word Problem Solver App","math-word-problem-solver-app",{"$sicons":227},{"bxl:facebook-circle":228,"bxl:instagram":232,"mdi:web":234,"la:apple":236,"ph:google-logo-bold":239,"ph:google-logo":242},{"left":229,"top":229,"width":230,"height":230,"rotate":229,"vFlip":130,"hFlip":130,"body":231},0,24,"\u003Cpath fill=\"currentColor\" d=\"M12.001 2.002c-5.522 0-9.999 4.477-9.999 9.999c0 4.99 3.656 9.126 8.437 9.879v-6.988h-2.54v-2.891h2.54V9.798c0-2.508 1.493-3.891 3.776-3.891c1.094 0 2.24.195 2.24.195v2.459h-1.264c-1.24 0-1.628.772-1.628 1.563v1.875h2.771l-.443 2.891h-2.328v6.988C18.344 21.129 22 16.992 22 12.001c0-5.522-4.477-9.999-9.999-9.999\"/>",{"left":229,"top":229,"width":230,"height":230,"rotate":229,"vFlip":130,"hFlip":130,"body":233},"\u003Cpath fill=\"currentColor\" d=\"M11.999 7.377a4.623 4.623 0 1 0 0 9.248a4.623 4.623 0 0 0 0-9.248m0 7.627a3.004 3.004 0 1 1 0-6.008a3.004 3.004 0 0 1 0 6.008\"/>\u003Ccircle cx=\"16.806\" cy=\"7.207\" r=\"1.078\" fill=\"currentColor\"/>\u003Cpath fill=\"currentColor\" d=\"M20.533 6.111A4.6 4.6 0 0 0 17.9 3.479a6.6 6.6 0 0 0-2.186-.42c-.963-.042-1.268-.054-3.71-.054s-2.755 0-3.71.054a6.6 6.6 0 0 0-2.184.42a4.6 4.6 0 0 0-2.633 2.632a6.6 6.6 0 0 0-.419 2.186c-.043.962-.056 1.267-.056 3.71s0 2.753.056 3.71c.015.748.156 1.486.419 2.187a4.6 4.6 0 0 0 2.634 2.632a6.6 6.6 0 0 0 2.185.45c.963.042 1.268.055 3.71.055s2.755 0 3.71-.055a6.6 6.6 0 0 0 2.186-.419a4.6 4.6 0 0 0 2.633-2.633c.263-.7.404-1.438.419-2.186c.043-.962.056-1.267.056-3.71s0-2.753-.056-3.71a6.6 6.6 0 0 0-.421-2.217m-1.218 9.532a5 5 0 0 1-.311 1.688a3 3 0 0 1-1.712 1.711a5 5 0 0 1-1.67.311c-.95.044-1.218.055-3.654.055c-2.438 0-2.687 0-3.655-.055a5 5 0 0 1-1.669-.311a3 3 0 0 1-1.719-1.711a5.1 5.1 0 0 1-.311-1.669c-.043-.95-.053-1.218-.053-3.654s0-2.686.053-3.655a5 5 0 0 1 .311-1.687c.305-.789.93-1.41 1.719-1.712a5 5 0 0 1 1.669-.311c.951-.043 1.218-.055 3.655-.055s2.687 0 3.654.055a5 5 0 0 1 1.67.311a3 3 0 0 1 1.712 1.712a5.1 5.1 0 0 1 .311 1.669c.043.951.054 1.218.054 3.655s0 2.698-.043 3.654z\"/>",{"left":229,"top":229,"width":230,"height":230,"rotate":229,"vFlip":130,"hFlip":130,"body":235},"\u003Cpath fill=\"currentColor\" d=\"M16.36 14c.08-.66.14-1.32.14-2s-.06-1.34-.14-2h3.38c.16.64.26 1.31.26 2s-.1 1.36-.26 2m-5.15 5.56c.6-1.11 1.06-2.31 1.38-3.56h2.95a8.03 8.03 0 0 1-4.33 3.56M14.34 14H9.66c-.1-.66-.16-1.32-.16-2s.06-1.35.16-2h4.68c.09.65.16 1.32.16 2s-.07 1.34-.16 2M12 19.96c-.83-1.2-1.5-2.53-1.91-3.96h3.82c-.41 1.43-1.08 2.76-1.91 3.96M8 8H5.08A7.92 7.92 0 0 1 9.4 4.44C8.8 5.55 8.35 6.75 8 8m-2.92 8H8c.35 1.25.8 2.45 1.4 3.56A8 8 0 0 1 5.08 16m-.82-2C4.1 13.36 4 12.69 4 12s.1-1.36.26-2h3.38c-.08.66-.14 1.32-.14 2s.06 1.34.14 2M12 4.03c.83 1.2 1.5 2.54 1.91 3.97h-3.82c.41-1.43 1.08-2.77 1.91-3.97M18.92 8h-2.95a15.7 15.7 0 0 0-1.38-3.56c1.84.63 3.37 1.9 4.33 3.56M12 2C6.47 2 2 6.5 2 12a10 10 0 0 0 10 10a10 10 0 0 0 10-10A10 10 0 0 0 12 2\"/>",{"left":229,"top":229,"width":237,"height":237,"rotate":229,"vFlip":130,"hFlip":130,"body":238},32,"\u003Cpath fill=\"currentColor\" d=\"M20.844 2c-1.64 0-3.297.852-4.407 2.156v.032c-.789.98-1.644 2.527-1.375 4.312c-.128-.05-.136-.035-.28-.094c-.692-.281-1.548-.594-2.563-.594c-3.98 0-7 3.606-7 8.344c0 3.067 1.031 5.942 2.406 8.094c.688 1.078 1.469 1.965 2.281 2.625S11.57 28 12.531 28s1.68-.324 2.219-.563c.54-.238.957-.437 1.75-.437c.715 0 1.078.195 1.625.438c.547.242 1.293.562 2.281.562c1.07 0 1.98-.523 2.719-1.188s1.36-1.519 1.875-2.343c.516-.824.922-1.633 1.219-2.282c.148-.324.258-.593.343-.812s.13-.281.188-.531l.188-.813l-.75-.343a5.3 5.3 0 0 1-1.5-1.063c-.625-.637-1.157-1.508-1.157-2.844A4.08 4.08 0 0 1 24.563 13c.265-.309.542-.563.75-.719c.105-.078.187-.117.25-.156c.062-.04.05-.027.156-.094l.843-.531l-.562-.844c-1.633-2.511-4.246-2.844-5.281-2.844c-.48 0-.82.168-1.25.25c.242-.226.554-.367.75-.624c.004-.004-.004-.028 0-.032q.018-.016.031-.031h.031a6.16 6.16 0 0 0 1.563-4.438L21.78 2zm-1.188 2.313c-.172.66-.453 1.289-.906 1.78l-.063.063c-.382.516-.972.899-1.562 1.125c.164-.652.45-1.312.844-1.812c.008-.012.023-.02.031-.032c.438-.5 1.043-.875 1.656-1.125zm-7.437 5.5c.558 0 1.172.21 1.812.468s1.239.594 2.094.594c.852 0 1.496-.336 2.25-.594s1.559-.469 2.344-.469c.523 0 1.816.333 2.906 1.344c-.191.172-.36.297-.563.531a6.2 6.2 0 0 0-1.53 4.094c0 1.906.831 3.34 1.718 4.25c.55.563.89.696 1.313.938c-.055.125-.086.222-.157.375a19 19 0 0 1-1.093 2.062c-.454.727-1.004 1.434-1.532 1.907c-.527.472-1 .687-1.375.687c-.566 0-.898-.156-1.468-.406S17.581 25 16.5 25c-1.137 0-1.977.336-2.563.594c-.585.258-.89.406-1.406.406c-.246 0-.777-.2-1.375-.688c-.597-.488-1.254-1.23-1.844-2.156c-1.183-1.851-2.093-4.394-2.093-7c0-3.941 2.199-6.343 5-6.343\"/>",{"left":229,"top":229,"width":240,"height":240,"rotate":229,"vFlip":130,"hFlip":130,"body":241},256,"\u003Cpath fill=\"currentColor\" d=\"M228 128a100 100 0 1 1-22.86-63.64a12 12 0 0 1-18.51 15.28A76 76 0 1 0 203.05 140H128a12 12 0 0 1 0-24h88a12 12 0 0 1 12 12\"/>",{"left":229,"top":229,"width":240,"height":240,"rotate":229,"vFlip":130,"hFlip":130,"body":243},"\u003Cpath fill=\"currentColor\" d=\"M224 128a96 96 0 1 1-21.95-61.09a8 8 0 1 1-12.33 10.18A80 80 0 1 0 207.6 136H128a8 8 0 0 1 0-16h88a8 8 0 0 1 8 8\"/>",{"oVhJaef6Ht":8,"t96FybqVTi":8,"ZSY7laoPUh":8,"82dnVg7sWB":8,"6CRScSEHUA":8,"Mz1ELIDwWH":8},"/tutorials/finding-the-area-of-a-triangle"] AppleWebKit/537.36 KHTML,likeGecko Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://gcdn.fx2.io/math-master.org/"}}