Question

2. We want to compute the area of the region between the line y = x βˆ’ 1 and the parabola y2 = 2x + 6 We have two methods to calculate this one. For both methods, start by finding the points of interception and sketching the region. (a) Method 1. Solve for y on the equation y2 = 2x + 6. You will notice that there are two solutions. Look back at the graph. These correspond to the two branches of the parabola when we consider y as a function of x. Try to decompose your area as the sum of two areas that you can write as integrals. Be careful. (b) Method 2. Think of y as the variable and of x as a function of y

209

likes
1044 views

Answer to a math question 2. We want to compute the area of the region between the line y = x βˆ’ 1 and the parabola y2 = 2x + 6 We have two methods to calculate this one. For both methods, start by finding the points of interception and sketching the region. (a) Method 1. Solve for y on the equation y2 = 2x + 6. You will notice that there are two solutions. Look back at the graph. These correspond to the two branches of the parabola when we consider y as a function of x. Try to decompose your area as the sum of two areas that you can write as integrals. Be careful. (b) Method 2. Think of y as the variable and of x as a function of y

Expert avatar
Maude
4.7
107 Answers
To find the area of the region between the line and the parabola, we will use Method 1.

Step 1: Solve for y in the equation y^2 = 2x + 6.
Taking the square root of both sides, we get:
y = ±√(2x + 6).

Step 2: Find the points of intersection by setting the two equations equal to each other:
x - 1 = ±√(2x + 6).

Squaring both sides to remove the square root, we have:
(x - 1)^2 = 2x + 6.

Expanding and rearranging the equation, we get:
x^2 - 4x + 1 = 0.

Step 3: Solve for x by factoring or using the quadratic formula. Since the quadratic equation does not factor easily, we will use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a).

Plugging in the values a = 1, b = -4, and c = 1 into the quadratic formula, we get:
x = (-(-4) ± √((-4)^2 - 4(1)(1))) / (2(1)).
Simplifying, we have:
x = (4 ± √(16 - 4)) / 2,
x = (4 ± √(12)) / 2,
x = (4 ± 2√(3)) / 2.

Step 4: Simplify the x-values:
x = 2 ± √(3).

Step 5: Calculate the areas between the line and the parabola using integrals. We will split the region into two parts, with the first part being from x = 2 - √(3) to x = 2 + √(3), and the second part being from x = 2 + √(3) to x = 2 - √(3).

First part:
∫[(x - 1) - √(2x + 6)] dx from 2 - √(3) to 2 + √(3).

Second part:
∫[√(2x + 6) - (x - 1)] dx from 2 + √(3) to 2 - √(3).

Step 6: Evaluate the integrals using the antiderivative of each function.

First part:
∫[(x - 1) - √(2x + 6)] dx
= ∫x - 1 - (2x + 6)^(1/2) dx
= (1/2)x^2 - x - (2/3)(2x + 6)^(3/2)] from 2 - √(3) to 2 + √(3).

Second part:
∫[√(2x + 6) - (x - 1)] dx
= ∫(2x + 6)^(1/2) - x + 1 dx
= (2/3)(2x + 6)^(3/2) - (1/2)x^2 + x] from 2 + √(3) to 2 - √(3).

Step 7: Calculate the values of the areas using the evaluated integrals.

First part:
[(1/2)(2 + √(3))^2 - (2 + √(3)) - (2/3)(2(2 + √(3)) + 6)^(3/2)] - [(1/2)(2 - √(3))^2 - (2 - √(3)) - (2/3)(2(2 - √(3)) + 6)^(3/2)].

Second part:
[(2/3)(2(2 - √(3)) + 6)^(3/2) - (1/2)(2 - √(3))^2 + (2 - √(3))] - [(2/3)(2(2 + √(3)) + 6)^(3/2) - (1/2)(2 + √(3))^2 + (2 + √(3))].

After simplifying the expressions, we get the final answer:

Answer: The area of the region between the line y = x βˆ’ 1 and the parabola y^2 = 2x + 6 is given by the evaluated expressions from the integrals in Step 7.

Frequently asked questions (FAQs)
Question: What is the limit of the product of a constant 'c' and a function 'f(x)' as 'x' approaches a specific value 'a'?
+
What is the value of ∫(3x^2 - 2x + 5)dx?
+
Math Question: What is the constant value of the function f(x) if it always returns the same output regardless of the input?
+
New questions in Mathematics
5(4x+3)=75
Given the vectors: a = (2m – 3n, 4n – m) and b = (2, -3), find the values of m and n that make: a = 5 b.
what is the annual rate on ​$525 at 0.046​% per day for 3 months?
Suppose the horses in a large stable, have a mean weight of a 807 pounds and a variance of 5776. What is the probability that the mean weight of the sample of horses with differ from the population mean by greater than 18 pounds is 41 horses are sampled at random from the stable round your answer to four decimal places.
Margin of error E=0.30 populations standard deviation =2.5. Population means with 95% confidence. What I the required sample size (round up to the whole number)
The function g:Q→Q is a ring homomorphism such that g(3)=3 and g(5)=5. What are the values of g(8) and g(9)?
We have spent 1/4 of the inheritance on taxes and 3/5 of the rest on buying a house. If the inheritance was a total of €150,000 How much money do we have left?
is the x element (180,270), if tanx-3cotx=2, sinx ?
find x in the equation 2x-4=6
7. Find the equation of the line passing through the points (βˆ’4,βˆ’2) π‘Žπ‘›π‘‘ (3,6), give the equation in the form π‘Žπ‘₯+𝑏𝑦+𝑐=0, where π‘Ž,𝑏,𝑐 are whole numbers and π‘Ž>0.
Let A, B, C and D be sets such that | A| = |C| and |B| = |D|. Prove that |A Γ— B| = |C Γ— D|
You are the newly appointed transport manager for Super Trucking (Pty) Ltd, which operates as a logistics service provider for various industries throughout southern Africa. One of these vehicles is a 4x2 Rigid Truck and drawbar trailer that covers 48,000 km per year. Use the assumptions below to answer the following questions (show all calculations): Overheads R 176,200 Cost of capital (% of purchase price per annum) 11.25% Annual License Feesβ€”Truck R 16,100 Driver Monthly cost R 18,700 Assistant Monthly cost R 10,500 Purchase price: - Truck R 1,130,000 Depreciation: straight line method Truck residual value 25% Truck economic life (years) 5 Purchase price: Trailer R 370,000 Tyre usage and cost (c/km) 127 Trailer residual value 0% Trailer economic life (years) 10 Annual License Feesβ€”Trailer R 7,700 Fuel consumption (liters/100km) 22 Fuel price (c/liter) 2053 Insurance (% of cost price) 7.5% Maintenance cost (c/km) 105 Distance travelled per year (km) 48000 Truck (tyres) 6 Trailer (tyres) 8 New tyre price (each) R 13,400 Lubricants (% of fuel cost) 2.5% Working weeks 50 Working days 5 days / week Profit margin 25% VAT 15% Q1. Calculate the annual total vehicle costs (TVC)
Use a pattern approach to explain why (-2)(-3)=6
The question is using rule 72 determine Kari wants to save 10,000 for a down payment on a house. Illustrate the difference in years it will take her to double her current 5,000 savings based on 6%, 12% and 18% interest rate .
What is 75 percent less than 60
9/14 x 7/27 carry out indicated operation
Calculate the change in internal energy of a gas that receives 16000 J of heat at constant pressure (1.3 atm) expanding from 0.100 m3 to 0.200 m3. Question 1Answer to. 7050J b. 2125J c. None of the above d. 2828J and. 10295 J
Given a circle π‘˜(𝑆; π‘Ÿ = 4 π‘π‘š) and a line |𝐴𝐡| = 2 π‘π‘š. Determine and construct the set of all centers of circles that touch circle π‘˜ and have radius π‘Ÿ = |𝐴𝐡|
The mean of 4 numbers is 5 and the mean of 3 different numbers is 12. What is the mean of the 7 numbers together? Produce an algebraic solution. Guess and check is acceptable.
The following incoming payments show up at a tax inspection: 25 000€ on 19.01.2008, 140 000€ on 27.03.2008 and 19 000€ on a date that which is illegible, and 60 000€ on 15.06.2008. On which date did the payment of the 19 000€ appear, if on 30.06.2008 the money on the account (incl. interest at 4%) is 246 088.89€? Use simple interest and 30E/360 DCC. Solution: 45 days, 15.05.08