Question

# 5008-4729

164

likes
821 views

## Answer to a math question 5008-4729

Jayne
4.4
$\begin{matrix}\:\:&5&0&0&\bold{8}\\-&4&7&2&\bold{9}\end{matrix}$
$\begin{matrix}\:\:&5&0&\bold{0}&8\\-&4&7&\bold{2}&9\end{matrix}$
$\begin{matrix}\:\:&5&\bold{0}&0&8\\-&4&\bold{7}&2&9\end{matrix}$
$\begin{matrix}\:\:&\bold{4}&10&\:\:&\:\:\\\:\:&\bold{5}&0&0&8\\-&\bold{4}&7&2&9\end{matrix}$
$\begin{matrix}\:\:&4&\bold{10}&\:\:&\:\:\\\:\:&5&\bold{0}&0&8\\-&4&\bold{7}&2&9\end{matrix}$
$\begin{matrix}\:\:&4&\bold{9}&10&\:\:\\\:\:&5&\bold{\linethrough{10}}&0&8\\-&4&\bold{7}&2&9\end{matrix}$
$\begin{matrix}\:\:&4&9&\bold{10}&\:\:\\\:\:&5&\linethrough{10}&\bold{0}&8\\-&4&7&\bold{2}&9\end{matrix}$
$\begin{matrix}\:\:&4&9&\bold{9}&10\\\:\:&5&\linethrough{10}&\bold{\linethrough{10}}&8\\-&4&7&\bold{2}&9\end{matrix}$
$\begin{matrix}\:\:&4&9&9&\bold{18}\\\:\:&5&\linethrough{10}&\linethrough{10}&\bold{8}\\-&4&7&2&\bold{9}\end{matrix}$
$\frac{\begin{matrix}\:\:&4&9&9&\bold{18}\\\:\:&5&\linethrough{10}&\linethrough{10}&\bold{8}\\-&4&7&2&\bold{9}\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\bold{9}\end{matrix}}$
$\frac{\begin{matrix}\:\:&4&9&\bold{9}&18\\\:\:&5&\linethrough{10}&\bold{\linethrough{10}}&8\\-&4&7&\bold{2}&9\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\bold{7}&9\end{matrix}}$
$\frac{\begin{matrix}\:\:&4&\bold{9}&9&18\\\:\:&5&\bold{\linethrough{10}}&\linethrough{10}&8\\-&4&\bold{7}&2&9\end{matrix}}{\begin{matrix}\:\:&\:\:&\bold{2}&7&9\end{matrix}}$
$\frac{\begin{matrix}\:\:&\bold{4}&9&9&18\\\:\:&\bold{5}&\linethrough{10}&\linethrough{10}&8\\-&\bold{4}&7&2&9\end{matrix}}{\begin{matrix}\:\:&\bold{0}&2&7&9\end{matrix}}$
$\begin{matrix}\:\:&5&0&0&8\\-&4&7&2&9\end{matrix}$ $=279$

Frequently asked questions $FAQs$
What is the maximum value of the cubic function f$x$ = x^3 on the interval [0,1]?
+
Question: Solve log$base 2$ of x plus log$base 3$ of $x + 2$ equals 3.
+
What is the derivative of the function y = sin$x$ + 2cos$x$ - 3tan$x$ at x = π/4?
+