1. La suma de 40 pagos parciales que forman una progresión aritmética es igual al monto total.
2. La fórmula de la suma de una progresión aritmética es:
S_n = \frac{n}{2} \left( 2a_1 + (n-1)d \right)
3. Dado que el total pagado es S_{40} = 360,000 y n = 40 , se tiene:
360,000 = \frac{40}{2} \left( 2a_1 + 39d \right)
360,000 = 20 \left( 2a_1 + 39d \right)
18,000 = 2a_1 + 39d
4. Cuando se ha realizado el pago de 30 cuotas:
S_{30} = \frac{30}{2} \left( 2a_1 + (30-1)d \right)
S_{30} = 15 \left( 2a_1 + 29d \right)
5. Suponemos que para 30 pagos, $ S_{30} $ también es proporción de $ S_{40} $:
\frac{30}{40} \cdot 360,000 = 270,000
270,000 = 15 \left( 2a_1 + 29d \right)
18,000 = 2a_1 + 29d
6. Tenemos dos ecuaciones:
18,000 = 2a_1 + 39d
18,000 = 2a_1 + 29d
7. Restando la segunda de la primera:
10d = 0
d = 150
8. Sustituyendo $ d $ de vuelta a una de las ecuaciones:
18,000 = 2a_1 + 29(150)
18,000 = 2a_1 + 4,350
13,650 = 2a_1
a_1 = 3,000
9. Por lo tanto, el primer pago es:
a_1 = 3,000
10. Y la diferencia común es:
d = 150