Question

company B receives all UM allowances for free and that company A receives no allowances at all. What will the allocation of emission rights look like when the companies have achieved a pareto-efficient solution by "trading emissions rights" with each other (emissions trading)? Illustrate your reasoning with a figure and explain the way to the solution. Can you imagine a situation where a very uneven distribution of emission rights could be motivated? (Remember that the companies can be industries or countries).

104

likes
518 views

Answer to a math question company B receives all UM allowances for free and that company A receives no allowances at all. What will the allocation of emission rights look like when the companies have achieved a pareto-efficient solution by "trading emissions rights" with each other (emissions trading)? Illustrate your reasoning with a figure and explain the way to the solution. Can you imagine a situation where a very uneven distribution of emission rights could be motivated? (Remember that the companies can be industries or countries).

Expert avatar
Timmothy
4.8
96 Answers
För att finna en paretoeffektiv lösning genom utslÀppshandel mellan företag A och B, dÀr företag B har alla utslÀppsrÀtter och företag A inte har nÄgra, kan vi utföra följande steg:

1. Företag A och B kan handla utslÀppsrÀtter med varandra. Genom att göra det kan de komma överens om en lÀmplig fördelning av utslÀppsrÀtter för att optimera sin produktion och minimera sina kostnader.

2. Antag att företag A och B kommer överens om att fördela utslÀppsrÀtterna sÄ att bÄda företagen har en viss mÀngd utslÀppsrÀtter var. Detta kan ske genom förhandling eller genom att bestÀmma priset för en utslÀppsrÀtt som bÄda parter Àr överens om.

3. Genom denna utslÀppshandel och fördelning av utslÀppsrÀtter kan företag A och B nÄ en paretoeffektiv lösning dÀr bÄda företagen gynnas genom att maximera sin vinst eller minimera sina kostnader.

En vÀldigt ojÀmn fördelning av utslÀppsrÀtter kan vara motiverad i vissa situationer, till exempel om ett företag har specifika behov eller om det finns en historisk orÀttvisa i fördelningen av utslÀppsrÀtter mellan olika branscher eller lÀnder. Det Àr viktigt att beakta sÄdana faktorer vid allokeringen av utslÀppsrÀtter för att uppnÄ en rÀttvis och effektiv lösning.

HÀr Àr hur allokeringen av utslÀppsrÀtter kan se ut i en figur:

\text{Företag A} \begin{array}{|c|c|}\hline\text{Företag A} & \text{Företag B} \\hline0 & 100 \\hline\end{array}

\text{Företag B} \begin{array}{|c|c|}\hline\text{Företag A} & \text{Företag B} \\hline50 & 50 \\hline\end{array}

\text{Företag A} \begin{array}{|c|c|}\hline\text{Företag A} & \text{Företag B} \\hline100 & 0 \\hline\end{array}

SÄledes fÄr Företag A 50 utslÀppsrÀtter och Företag B fÄr 50 utslÀppsrÀtter genom utslÀppshandel för att nÄ en paretoeffektiv lösning.

\textbf{Svar: Allokeringen av utslÀppsrÀtter efter utslÀppshandel Àr 50 utslÀppsrÀtter för Företag A och 50 utslÀppsrÀtter för Företag B.}

Frequently asked questions (FAQs)
What are the characteristics of the ellipse function given by (x - h)^2 / a^2 + (y - k)^2 / b^2 = 1, where (h,k) represents the center, a represents the horizontal radius, and b represents the vertical radius?
+
What is the variance of a data set consisting of {5, 7, 9, 11, 13}?
+
What is the length of unknown side in a triangle where angle B = 40˚, angle C = 70˚, and side a = 10?
+
New questions in Mathematics
If you have a bag with 18 white balls and 2 black balls. What is the probability of drawing a white ball? And extracting a black one?
Evaluate limx→∞tan−1(x) using that y=tan−1(x) exactly when x=tan(y) . (Hint: Both tan and tan−1 are continuous!)
What will be the density of a fluid whose volume is 130 cubic meters contains 16 technical units of mass? If required Consider g=10 m/s2
7273736363-8
The actual length of an object is 1.3 m . If the blueprint uses a scale of 1 : 12 , what is the length of the line on the drawing?
A construction company is working on two projects: house construction and building construction. Each house requires 4 weeks of work and produces a profit of $50,000. Each building requires 8 weeks of work and produces a profit of $100,000. The company has a total of 24 work weeks available. Furthermore, it is known that at least 2 houses and at least 1 building must be built to meet the demand. The company wants to maximize its profits and needs to determine how many houses and buildings it should build to meet demand and maximize profits, given time and demand constraints.
In the telephone exchange of a certain university, calls come in at a rate of 5 every 2 minutes. Assuming a Poisson distribution, the average number of calls per second is: a) 1/8 b) 1/12 c) 1/10 d) 2/5 e) 1/24
A triangular window has a base of 6 ft. and a height of 7 ft. What is its area?
89, Ă· 10
Equine infectious anemia (EIA) is considered the main infectious disease in Brazilian equine farming, for which there is no effective vaccine or treatment. It is caused by a retrovirus of the genus Lentivirus, which affects horses, donkeys and mules and is transmitted in nature mainly by hematophagous insects of the genus Tabanidae. Researchers analyzed the records of 9,439 equids from Acre, submitted to the agar gel immunodiffusion test (AGID) for equine infectious anemia (EIA), between 1986 and 1996. Of these, 6199 tested positive for equine infectious anemia (EIA) . Knowing that the age of AIE-positive horses follows a Normal distribution with a mean of 5 years and a standard deviation of 1.5 years, determine the expected number of AIE-positive horses in the Acre sample that will be aged less than or equal to 3 years. ATTENTION: Provide the answer to exactly FOUR decimal places.
The market for economics textbooks is represented by the following supply and demand equations: P = 5 + 2Qs P = 20 - Qd Where P is the price in ÂŁs and Qs and Qd are the quantities supplied and demanded in thousands. What is the equilibrium price?
Let A, B, C and D be sets such that | A| = |C| and |B| = |D|. Prove that |A × B| = |C × D|
Find the center coordinates and radius of a circle for an equation written as: 3x2 + 3y2 - 6y = —12× + 24
Given the word WEIRD, determine a four-letter offspring that can be formed with the letters of the word written above
OiđŸ‘‹đŸ» Toque em "Criar Nova Tarefa" para enviar seu problema de matemĂĄtica. Um dos nossos especialistas começarĂĄ a trabalhar nisso imediatamente!
Farm Grown, Inc., produces cases of perishable food products. Each case contains an assortment of vegetables and other farm products. Each case costs $5 and sells for $15. If there are any not sold by the end of the day, they are sold to a large food processing company for $3 a case. The probability that daily demand will be 100 cases is 0.30, the probability that daily demand will be 200 cases is 0.40, and the probability that daily demand will be 300 cases is 0.30. Farm Grown has a policy of always satisfying customer demands. If its own supply of cases is less than the demand, it buys the necessary vegetables from a competitor. The estimated cost of doing this is $16 per case. (a) Draw a decision table for this problem (b) What do you recommend?
there are 500,000 bacteria at the end of a pin point. 1000 bacteria can make a person sick. then bacteria at the tip of a pin point can make 500 people sick. Also, many people do not know that bacteria can (reproduce). Let's say there are 5 bacteria and we leave it for 15 minutes. bacteria will multiply to 10. if left for up to 30 minutes, 20 bacteria will form. if left up to 45 minutes. bacteria will multiply up to 40. every 15 minutes the bacteria will double 2. if you start with five bacteria that reproduce every 15 minutes, how manu bacteria would you have after 12 hours ?
How much does 7.2 moles of ammonium dichromate weigh? (NH4)2Cr2O7
a coffee shop has 9 types of creamer and 11 types of sweetener. In how any ways can a person make their coffee?
I have a complex function I would like to integrate over. I can use two approaches and they should give the same solution. If I want to find the contour integral âˆ«đ›Ÿđ‘§ÂŻđ‘‘đ‘§ for where đ›Ÿ is the circle |𝑧−𝑖|=3 oriented counterclockwise I get the following: ∫2𝜋0𝑖+3𝑒𝑖𝑡⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯𝑑(𝑖+3𝑒𝑖𝑡)=∫2𝜋03𝑖(−𝑖+3𝑒−𝑖𝑡)𝑒𝑖𝑡𝑑𝑡=18𝜋𝑖 If I directly apply the Residue Theorem, I would get âˆ«đ›Ÿđ‘§ÂŻđ‘‘đ‘§=2𝜋𝑖Res(𝑓,𝑧=0)=2𝜋𝑖