Question

company B receives all UM allowances for free and that company A receives no allowances at all. What will the allocation of emission rights look like when the companies have achieved a pareto-efficient solution by "trading emissions rights" with each other (emissions trading)? Illustrate your reasoning with a figure and explain the way to the solution. Can you imagine a situation where a very uneven distribution of emission rights could be motivated? (Remember that the companies can be industries or countries).

104

likes
518 views

Answer to a math question company B receives all UM allowances for free and that company A receives no allowances at all. What will the allocation of emission rights look like when the companies have achieved a pareto-efficient solution by "trading emissions rights" with each other (emissions trading)? Illustrate your reasoning with a figure and explain the way to the solution. Can you imagine a situation where a very uneven distribution of emission rights could be motivated? (Remember that the companies can be industries or countries).

Expert avatar
Timmothy
4.8
99 Answers
För att finna en paretoeffektiv lösning genom utslÀppshandel mellan företag A och B, dÀr företag B har alla utslÀppsrÀtter och företag A inte har nÄgra, kan vi utföra följande steg:

1. Företag A och B kan handla utslÀppsrÀtter med varandra. Genom att göra det kan de komma överens om en lÀmplig fördelning av utslÀppsrÀtter för att optimera sin produktion och minimera sina kostnader.

2. Antag att företag A och B kommer överens om att fördela utslÀppsrÀtterna sÄ att bÄda företagen har en viss mÀngd utslÀppsrÀtter var. Detta kan ske genom förhandling eller genom att bestÀmma priset för en utslÀppsrÀtt som bÄda parter Àr överens om.

3. Genom denna utslÀppshandel och fördelning av utslÀppsrÀtter kan företag A och B nÄ en paretoeffektiv lösning dÀr bÄda företagen gynnas genom att maximera sin vinst eller minimera sina kostnader.

En vÀldigt ojÀmn fördelning av utslÀppsrÀtter kan vara motiverad i vissa situationer, till exempel om ett företag har specifika behov eller om det finns en historisk orÀttvisa i fördelningen av utslÀppsrÀtter mellan olika branscher eller lÀnder. Det Àr viktigt att beakta sÄdana faktorer vid allokeringen av utslÀppsrÀtter för att uppnÄ en rÀttvis och effektiv lösning.

HÀr Àr hur allokeringen av utslÀppsrÀtter kan se ut i en figur:

\text{Företag A} \begin{array}{|c|c|}\hline\text{Företag A} & \text{Företag B} \\hline0 & 100 \\hline\end{array}

\text{Företag B} \begin{array}{|c|c|}\hline\text{Företag A} & \text{Företag B} \\hline50 & 50 \\hline\end{array}

\text{Företag A} \begin{array}{|c|c|}\hline\text{Företag A} & \text{Företag B} \\hline100 & 0 \\hline\end{array}

SÄledes fÄr Företag A 50 utslÀppsrÀtter och Företag B fÄr 50 utslÀppsrÀtter genom utslÀppshandel för att nÄ en paretoeffektiv lösning.

\textbf{Svar: Allokeringen av utslÀppsrÀtter efter utslÀppshandel Àr 50 utslÀppsrÀtter för Företag A och 50 utslÀppsrÀtter för Företag B.}

Frequently asked questions (FAQs)
What is the vertex form equation of a quadratic function when the vertex is (-2, 5)?
+
Math question: Find the x-intercept of the line with slope 3/2 and y-intercept 4.
+
What are the characteristic features of a hyperbola function?
+
New questions in Mathematics
Find an arc length parameterization of the curve that has the same orientation as the given curve and for which the reference point corresponds to t=0. Use an arc length s as a parameter. r(t) = 3(e^t) cos (t)i + 3(e^t)sin(t)j; 0<=t<=(3.14/2)
12-6x=4x+2
Karina has a plot of 5,000 square meters in which she has decided that 60% of it will be used to plant vegetables. Of this part, 12% will be dedicated to planting lettuce. How much surface area of the plot will be used for cultivation?
How many percent is one second out a 24 hour?
In a random sample of 600 families in the Metropolitan Region that have cable television service, it is found that 460 are subscribed to the Soccer Channel (CDF). How large a sample is required to be if we want to be 95% confident that the estimate of “p” is within 0.03?
Determine the correct value: A company knows that invoices pending collection have a normal distribution with a mean of $1.65 million, with a standard deviation of $0.2 million, then: The probability that an invoice pending collection has an amount that is within more than 2 deviations below the mean, is:
What payment 7 months from now would be equivalent in value to a $3,300 payment due 23 months from now? The value of money is 2.7% simple interest. Round your answer to 2 decimal places. Show all work and how you arrive at the answer..
I need .23 turned into a fraction
B - (-4)=10
4X^2 25
The expected market return is 13,86% and the risk free rate 1%. What would then be the risk premium on the common stocks of a company which beta is 1,55? (in %, 2 decimal places)
Perpetual annuities are a series of payments whose duration has no end. Explain how can we calculate them, if they have no end?
The ninth term of a given geometric progression, with reason q , is 1792, and its fourth term is 56. Thus, calculate the fourth term of another geometric progression, whose ratio is q +1 and whose first term is equal to the first term of the first P.G. described.
Your boss asks you to plan the sample size for a randomized, double-blind, controlled trial in the clinical development of a cure for irritable bowl disease. Current standard treatment shall be compared with a new treatment in this trial. The S3-guideline of AWM demonstrated a mean change of the summary score of the validated health related quality of life questionnaire at 8 weeks of 16 with standard deviation 23 under standard treatment. You quote the drop-out rate of 11% from literature (previous phase of clinical development). Your research yielded a clinically important effect of 4 that has been found to be the Minimal Clinically Important Difference (MCID). In order to demonstrate superiority of the new treatment over standard of care, you assume that the change in of the summary score of the validated health related quality of life questionnaire follows a normal distribution, and that the standard deviation is the same for both treatments. How many patientes would one need to recruit for the trial to demonstrate the clinically interesting difference between treatments at significance level 5% with 95% power?
I. Order to add 40.25+1.31+.45 what is the first action to do ?
Engineers want to design seats in commercial aircraft so that they are wide enough to fit ​95% of all males.​ (Accommodating 100% of males would require very wide seats that would be much too​ expensive.) Men have hip breadths that are normally distributed with a mean of 14.4 in. and a standard deviation of 1.2 in. Find P95. That​ is, find the hip breadth for men that separates the smallest ​95% from the largest 5​%.
For what values of m is point P (m, 1 - 2m) in the 2⁰ quadrant?
factor the polynomial completely over the set of complex numbers b(x)=x^4-2x^3-17x^2+4x+30
simplify w+[6+(-5)]
Sin(5pi/3)