Question

company B receives all UM allowances for free and that company A receives no allowances at all. What will the allocation of emission rights look like when the companies have achieved a pareto-efficient solution by "trading emissions rights" with each other (emissions trading)? Illustrate your reasoning with a figure and explain the way to the solution. Can you imagine a situation where a very uneven distribution of emission rights could be motivated? (Remember that the companies can be industries or countries).

104

likes
518 views

Answer to a math question company B receives all UM allowances for free and that company A receives no allowances at all. What will the allocation of emission rights look like when the companies have achieved a pareto-efficient solution by "trading emissions rights" with each other (emissions trading)? Illustrate your reasoning with a figure and explain the way to the solution. Can you imagine a situation where a very uneven distribution of emission rights could be motivated? (Remember that the companies can be industries or countries).

Expert avatar
Timmothy
4.8
99 Answers
För att finna en paretoeffektiv lösning genom utslÀppshandel mellan företag A och B, dÀr företag B har alla utslÀppsrÀtter och företag A inte har nÄgra, kan vi utföra följande steg:

1. Företag A och B kan handla utslÀppsrÀtter med varandra. Genom att göra det kan de komma överens om en lÀmplig fördelning av utslÀppsrÀtter för att optimera sin produktion och minimera sina kostnader.

2. Antag att företag A och B kommer överens om att fördela utslÀppsrÀtterna sÄ att bÄda företagen har en viss mÀngd utslÀppsrÀtter var. Detta kan ske genom förhandling eller genom att bestÀmma priset för en utslÀppsrÀtt som bÄda parter Àr överens om.

3. Genom denna utslÀppshandel och fördelning av utslÀppsrÀtter kan företag A och B nÄ en paretoeffektiv lösning dÀr bÄda företagen gynnas genom att maximera sin vinst eller minimera sina kostnader.

En vÀldigt ojÀmn fördelning av utslÀppsrÀtter kan vara motiverad i vissa situationer, till exempel om ett företag har specifika behov eller om det finns en historisk orÀttvisa i fördelningen av utslÀppsrÀtter mellan olika branscher eller lÀnder. Det Àr viktigt att beakta sÄdana faktorer vid allokeringen av utslÀppsrÀtter för att uppnÄ en rÀttvis och effektiv lösning.

HÀr Àr hur allokeringen av utslÀppsrÀtter kan se ut i en figur:

\text{Företag A} \begin{array}{|c|c|}\hline\text{Företag A} & \text{Företag B} \\hline0 & 100 \\hline\end{array}

\text{Företag B} \begin{array}{|c|c|}\hline\text{Företag A} & \text{Företag B} \\hline50 & 50 \\hline\end{array}

\text{Företag A} \begin{array}{|c|c|}\hline\text{Företag A} & \text{Företag B} \\hline100 & 0 \\hline\end{array}

SÄledes fÄr Företag A 50 utslÀppsrÀtter och Företag B fÄr 50 utslÀppsrÀtter genom utslÀppshandel för att nÄ en paretoeffektiv lösning.

\textbf{Svar: Allokeringen av utslÀppsrÀtter efter utslÀppshandel Àr 50 utslÀppsrÀtter för Företag A och 50 utslÀppsrÀtter för Företag B.}

Frequently asked questions (FAQs)
What is the derivative of the hyperbolic function f(x) = sinh(ax) - cosh(bx)?
+
What is the solution to the cubic equation x^3 + 4x^2 - 3x - 18 = 0?
+
What is the axis of symmetry of the parabola function 𝑩 = 4đ‘„^2 - 3đ‘„ + 2?
+
New questions in Mathematics
Two fire lookouts are 12.5 km apart on a north-south line. The northern fire lookout sights a fire 20° south of East at the same time as the southern fire lookout spots it at 60° East of North. How far is the fire from the Southern lookout? Round your answer to the nearest tenth of a kilometer
Solution of the equation y'' - y' -6y = 0
I want to divide R$ 2200.00 between AntĂŽnio, Beto and CĂĄssia, so that Beto receives half from AntĂŽnio and CĂĄssia receives a third of Beto. Under these conditions, how much more will Beto receive than CĂĄssia?
A car tire can rotate at a frequency of 3000 revolutions per minute. Given that a typical tire radius is 0.5 m, what is the centripetal acceleration of the tire?
STUDENTS IN A CLASS LEARN ONLY ONE FOREIGN LANGUAGE. two-sevenths of the students learn German, half of the students learn Spanish, and the remaining six students learn Italian. what is the number of students in this class? detail your reasoning carefully.
(mÂČ-121)
What will be the density of a fluid whose volume is 130 cubic meters contains 16 technical units of mass? If required Consider g=10 m/s2
A construction company is working on two projects: house construction and building construction. Each house requires 4 weeks of work and produces a profit of $50,000. Each building requires 8 weeks of work and produces a profit of $100,000. The company has a total of 24 work weeks available. Furthermore, it is known that at least 2 houses and at least 1 building must be built to meet the demand. The company wants to maximize its profits and needs to determine how many houses and buildings it should build to meet demand and maximize profits, given time and demand constraints.
A merchant can sell 20 electric shavers a day at a price of 25 each, but he can sell 30 if he sets a price of 20 for each electric shaver. Determine the demand equation, assuming it is linear. Consider (P= price, X= quantity demanded)
I need to know what 20% or ÂŁ3292.75
Solve : 15/16 divide 12/8 =x/y
How many square feet of floor area are there in three two-storey apartment houses, each of which is 38 feet wide and 76 feet long?
Is -11/8 greater than or less than -1.37?
The following table shows the frequency of care for some animal species in a center specializing in veterinary dentistry. Species % Dog 52.8 Cat 19.2 Chinchilla 14.4 Marmoset 6.2 Consider that the center only serves 10 animals per week. For a given week, what is the probability that at least two are not dogs? ATTENTION: Provide the answer to exactly FOUR decimal places
3.24 Ă· 82
Use a pattern approach to explain why (-2)(-3)=6
Determine the increase of the function y=4x−5 when the argument changes from x1=2 to x2=3
The two sides of the triangle are 12 cm and 5 cm, and the angle between the sides is 60°. Cover the area of ​​the triangle!
-5x=115
Sodium 38.15 38.78 38.5 38.65 38.79 38.89 38.57 38.59 38.59 38.8 38.63 38.43 38.56 38.46 38.79 38.42 38.74 39.12 38.5 38.42 38.57 38.37 38.71 38.71 38.4 38.56 38.39 38.34 39.04 38.8 A supplier of bottled mineral water claims that his supply of water has an average sodium content of 36.6 mg/L. The boxplot below is of the sodium contents levels taken from a random sample of 30 bottles. With this data investigate the claim using SPSS to apply the appropriate test. Download the data and transfer it into SPSS. Check that your data transfer has been successful by obtaining the Std. Error of the mean for your data which should appear in SPSS output as 0.03900.. If you do not have this exact value, then you may have not transferred your data from the Excel file to SPSS correctly. Do not continue with the test until your value agrees as otherwise you may not have correct answers. Unless otherwise directed you should report all numeric values to the accuracy displayed in the SPSS output that is supplied when your data has been transferred correctly. In the following questions, all statistical tests should be carried out at the 0.05 significance level. Sample mean and median Complete the following concerning the mean and median of the data. mean =  mg/L 95% CI:  to  mg/L Based upon the 95% confidence interval, is it plausible that the average sodium content is 36.9 mg/L?      median:  mg/L The median value is      36.9 mg/L. Skewness Complete the following concerning the skewness of the data. Skewness statistic =        Std. Error =  The absolute value of the skewness statistic     less than 2 x Std. Error Therefore the data can be considered to come from a population that is      . Normality test Complete the following summary concerning the formal testing of the normality of the data. H0: The data come from a population that     normal H1: The data come from a population that     normal Application of the Shapiro-Wilk test indicated that the normality assumption     reasonable for sodium content (S-W(  )=  , p=   ). Main test Using the guidelines you have been taught that consider sample size, skewness and normality, choose and report the appropriate main test from the following ( Appropriate ONE ) You have selected that you wish to report the one-sample t-test. H0: The mean sodium content     equal to 36.9 mg/L H1: The mean sodium content     equal to 36.9 mg/L Application of the one-sample t-test indicated that the mean is      36.9 mg/L (t(  ) =  , p =   ). You have selected that you wish to report the Wilcoxon signed rank test. H0: The median sodium content     equal to 36.9 mg/L H1: The median sodium content     equal to 36.9 mg/L Application of the Wilcoxon signed rank test indicated that the median is      36.9 mg/L (z =  , N =  , p =   ).