Question

company B receives all UM allowances for free and that company A receives no allowances at all. What will the allocation of emission rights look like when the companies have achieved a pareto-efficient solution by "trading emissions rights" with each other (emissions trading)? Illustrate your reasoning with a figure and explain the way to the solution. Can you imagine a situation where a very uneven distribution of emission rights could be motivated? (Remember that the companies can be industries or countries).

104

likes
518 views

Answer to a math question company B receives all UM allowances for free and that company A receives no allowances at all. What will the allocation of emission rights look like when the companies have achieved a pareto-efficient solution by "trading emissions rights" with each other (emissions trading)? Illustrate your reasoning with a figure and explain the way to the solution. Can you imagine a situation where a very uneven distribution of emission rights could be motivated? (Remember that the companies can be industries or countries).

Expert avatar
Timmothy
4.8
99 Answers
För att finna en paretoeffektiv lösning genom utslÀppshandel mellan företag A och B, dÀr företag B har alla utslÀppsrÀtter och företag A inte har nÄgra, kan vi utföra följande steg:

1. Företag A och B kan handla utslÀppsrÀtter med varandra. Genom att göra det kan de komma överens om en lÀmplig fördelning av utslÀppsrÀtter för att optimera sin produktion och minimera sina kostnader.

2. Antag att företag A och B kommer överens om att fördela utslÀppsrÀtterna sÄ att bÄda företagen har en viss mÀngd utslÀppsrÀtter var. Detta kan ske genom förhandling eller genom att bestÀmma priset för en utslÀppsrÀtt som bÄda parter Àr överens om.

3. Genom denna utslÀppshandel och fördelning av utslÀppsrÀtter kan företag A och B nÄ en paretoeffektiv lösning dÀr bÄda företagen gynnas genom att maximera sin vinst eller minimera sina kostnader.

En vÀldigt ojÀmn fördelning av utslÀppsrÀtter kan vara motiverad i vissa situationer, till exempel om ett företag har specifika behov eller om det finns en historisk orÀttvisa i fördelningen av utslÀppsrÀtter mellan olika branscher eller lÀnder. Det Àr viktigt att beakta sÄdana faktorer vid allokeringen av utslÀppsrÀtter för att uppnÄ en rÀttvis och effektiv lösning.

HÀr Àr hur allokeringen av utslÀppsrÀtter kan se ut i en figur:

\text{Företag A} \begin{array}{|c|c|}\hline\text{Företag A} & \text{Företag B} \\hline0 & 100 \\hline\end{array}

\text{Företag B} \begin{array}{|c|c|}\hline\text{Företag A} & \text{Företag B} \\hline50 & 50 \\hline\end{array}

\text{Företag A} \begin{array}{|c|c|}\hline\text{Företag A} & \text{Företag B} \\hline100 & 0 \\hline\end{array}

SÄledes fÄr Företag A 50 utslÀppsrÀtter och Företag B fÄr 50 utslÀppsrÀtter genom utslÀppshandel för att nÄ en paretoeffektiv lösning.

\textbf{Svar: Allokeringen av utslÀppsrÀtter efter utslÀppshandel Àr 50 utslÀppsrÀtter för Företag A och 50 utslÀppsrÀtter för Företag B.}

Frequently asked questions (FAQs)
Math question: What is the sine value of an angle at 30 degrees on the unit circle chart?
+
What is the radian measure of a central angle that intercepts an arc measuring 5π units?
+
Question: Factorize the expression 3xÂČ - 12xy + 9yÂČ using the distributive property.
+
New questions in Mathematics
Since one of the three integers whose product is (-60) is (+4), write the values that two integers can take.
-8+3/5
If L (-2, -5) reflected across y = -4. What are the coordinates of L?
X^2 = 25
3x+5y=11 2x-3y=1
-0.15/32.6
What is the total tolerance for a dimension from 1.996" to 2.026*?
I need to know what 20% or ÂŁ3292.75
The points (-5,-4) and (3,6) are the ends of the diameter of the circle calculate subequation
30y - y . y = 144
Associate each 2nd degree equation with its respective roots. A) x2+6x+8=0 B)x2-5x-6=0
Read the “Local Communities as Stakeholders: Does Amazon Really Need Tax Breaks?” example on p. 83 in Ch. 3 of Management: A Practical Introduction. In your response, discuss whether you feel that tax breaks for big companies benefit local communities. Describe ways to attract business to a region without having a negative impact on the larger community.
xÂČ-7x+12=0
The following incoming payments show up at a tax inspection: 25 000€ on 19.01.2008, 140 000€ on 27.03.2008 and 19 000€ on a date that which is illegible, and 60 000€ on 15.06.2008. On which date did the payment of the 19 000€ appear, if on 30.06.2008 the money on the account (incl. interest at 4%) is 246 088.89€? Use simple interest and 30E/360 DCC. Solution: 45 days, 15.05.08
Kayla started a book club at her school. The number of girls in the book club was one more than twice the number of boys. If there are 15 girls in the book club, how many boys are in the club?
A small box measures 10 in. by 4 in. by 6 in. high. Find the volume of the box.
A person travels by car from one city to another with different constant speeds between pairs of cities. She drives for 55.0 min at 100.0 km/h, 14.0 min at 65.0 km/h, and 45.0 min at 60.0 km/h and spends 20.0 min eating lunch and buying gas. (a) Determine the average speed for the trip.
The company produces a product with a variable cost of $90 per unit. With fixed costs of $150,000 and a selling price of $1,200 per item, how many units must be sold to achieve a profit of $400,000?
Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.
Find the rule that connects the first number to the second number of each pair. Apply the rule to find the missing number in the third pair. (18 is to 22) (54 is to 26) (9 is to ?)