Question

company B receives all UM allowances for free and that company A receives no allowances at all. What will the allocation of emission rights look like when the companies have achieved a pareto-efficient solution by "trading emissions rights" with each other (emissions trading)? Illustrate your reasoning with a figure and explain the way to the solution. Can you imagine a situation where a very uneven distribution of emission rights could be motivated? (Remember that the companies can be industries or countries).

104

likes
518 views

Answer to a math question company B receives all UM allowances for free and that company A receives no allowances at all. What will the allocation of emission rights look like when the companies have achieved a pareto-efficient solution by "trading emissions rights" with each other (emissions trading)? Illustrate your reasoning with a figure and explain the way to the solution. Can you imagine a situation where a very uneven distribution of emission rights could be motivated? (Remember that the companies can be industries or countries).

Expert avatar
Timmothy
4.8
99 Answers
För att finna en paretoeffektiv lösning genom utslÀppshandel mellan företag A och B, dÀr företag B har alla utslÀppsrÀtter och företag A inte har nÄgra, kan vi utföra följande steg:

1. Företag A och B kan handla utslÀppsrÀtter med varandra. Genom att göra det kan de komma överens om en lÀmplig fördelning av utslÀppsrÀtter för att optimera sin produktion och minimera sina kostnader.

2. Antag att företag A och B kommer överens om att fördela utslÀppsrÀtterna sÄ att bÄda företagen har en viss mÀngd utslÀppsrÀtter var. Detta kan ske genom förhandling eller genom att bestÀmma priset för en utslÀppsrÀtt som bÄda parter Àr överens om.

3. Genom denna utslÀppshandel och fördelning av utslÀppsrÀtter kan företag A och B nÄ en paretoeffektiv lösning dÀr bÄda företagen gynnas genom att maximera sin vinst eller minimera sina kostnader.

En vÀldigt ojÀmn fördelning av utslÀppsrÀtter kan vara motiverad i vissa situationer, till exempel om ett företag har specifika behov eller om det finns en historisk orÀttvisa i fördelningen av utslÀppsrÀtter mellan olika branscher eller lÀnder. Det Àr viktigt att beakta sÄdana faktorer vid allokeringen av utslÀppsrÀtter för att uppnÄ en rÀttvis och effektiv lösning.

HÀr Àr hur allokeringen av utslÀppsrÀtter kan se ut i en figur:

\text{Företag A} \begin{array}{|c|c|}\hline\text{Företag A} & \text{Företag B} \\hline0 & 100 \\hline\end{array}

\text{Företag B} \begin{array}{|c|c|}\hline\text{Företag A} & \text{Företag B} \\hline50 & 50 \\hline\end{array}

\text{Företag A} \begin{array}{|c|c|}\hline\text{Företag A} & \text{Företag B} \\hline100 & 0 \\hline\end{array}

SÄledes fÄr Företag A 50 utslÀppsrÀtter och Företag B fÄr 50 utslÀppsrÀtter genom utslÀppshandel för att nÄ en paretoeffektiv lösning.

\textbf{Svar: Allokeringen av utslÀppsrÀtter efter utslÀppshandel Àr 50 utslÀppsrÀtter för Företag A och 50 utslÀppsrÀtter för Företag B.}

Frequently asked questions (FAQs)
Question: Convert the number 6.5 x 10^4 into standard decimal notation.
+
What is the variance of a data set consisting of {5, 8, 12, 15, 17}?
+
What is the value of sin^(-1)(1/2) - cos^(-1)(1/2)?
+
New questions in Mathematics
find the value of the tangent if it is known that the cos@= 1 2 and the sine is negative. must perform procedures.
3(4x-1)-2(x+3)=7(x-1)+2
B - (-4)=10
6. Among 100 of products there are 20 rejects. We will randomly select 10 of products. The random variable X indicates the number of rejects among the selected products. Determine its distribution.
Divide 22 by 5 solve it by array and an area model
The cost of unleaded gasoline in the Bay Area once followed an unknown distribution with a mean of $4.59 and a standard deviation of $0.10. Sixteen gas stations from the Bay Area are randomly chosen. We are interested in the average cost of gasoline for the 16 gas stations. 84. Find the probability that the average price for 30 gas stations is less than $4.55. a 0.6554 b 0.3446 c 0.0142 d 0.9858 e 0
20% of 3500
What’s the slope of a tangent line at x=1 for f(x)=x2. We can find the slopes of a sequence of secant lines that get closer and closer to the tangent line. What we are working towards is the process of finding a “limit” which is a foundational topic of calculus.
Exercise 1 An ejidal association wishes to determine the distribution for the three different crops that it can plant for the next season on its available 900 hectares. Information on the total available and how many resources are required for each hectare of cultivation is shown in the following tables: Total available resource Water 15,000 m3 Fertilizer 5,000 kg Labor 125 day laborers Requirements per cultivated hectare Corn Soybeans Wheat Water 15 25 20 Fertilizer 5 8 7 Labor** 1/8 1/5 1/4 *The data in fraction means that with one day laborer it will be possible to care for 8, 5 and 4 hectares respectively. * Sales of crops 1 and 3, according to information from the Department of Agriculture, are guaranteed and exceed the capacity of the cooperative. However, soybeans must be limited to a maximum of 150 hectares. On the other hand, the profits for each hectare of crop obtained are estimated at: $7,500 for corn, $8,500 for soybeans and $8,000 for wheat. The objectives are to determine: ‱ How many hectares of each crop must be allocated so that the profit is maximum. R= ‱ The estimated profits for the ejidal cooperative in the next growing season. R=
A storage maker price is $2.50 per square feet. Find the price of a custom shed 4 yards long, and 5yards wide and 8 feet tall
sum of 7a-4b+5c, -7a+4b-6c
Scores are normally distributed with a mean of 25 and standard deviation of 5. Find the probability that sixteen randomly selected students have a mean score that is less than 24.
Use the sample data and confidence level given below to complete parts​ (a) through​ (d). A drug is used to help prevent blood clots in certain patients. In clinical​ trials, among 4336 patients treated with the​ drug, 194 developed the adverse reaction of nausea. Construct a ​99% confidence interval for the proportion of adverse reactions.
Use linear approximation to estimate the value of the sine of 31o.
Three machines called A, B and C, produce 43%, 26% and 31% of the total production of a company, respectively. Furthermore, it has been detected that 8%, 2% and 1.6% of the product manufactured by these machines is defective. a) What is the probability that a product is not defective? b) A product is selected at random and found to be defective, what is the probability that it was manufactured on machine B?
Congratulations, you have saved well and are ready to begin your retirement. If you have $1,750,000.00 saved for your retirement and want it to last for 40 years, and will earn 10.8% compounded monthly: What is the amount of the monthly distribuion? 216.50 How much interest is earned in retirement?
Determine a general formula​ (or formulas) for the solution to the following equation.​ Then, determine the specific solutions​ (if any) on the interval [0,2π). cos30=0
Find the vertex F(x)=x^2-10x
A membership to the gym cost $25 per person in 1995. The membership cost has increased by an average $6 per person for each year since 1995. Write a linear equation for the cost of a gym membership for one person since 1995. What is the cost of a gym membership in 2009?
5 1/9 + 2 2/3