1. Given the zeros are -2, 3, 5 so the polynomial in factored form is:
P(x) = a(x + 2)(x - 3)(x - 5)
2. Use the point (6, 72) to find a :
72 = a(6 + 2)(6 - 3)(6 - 5)
3. Simplify inside the parentheses:
72 = a(8)(3)(1)
4. Solve for a :
72=24\Rightarrow a=3
5. Substitute a = 3 back into the polynomial:
P(x) = 3(x + 2)(x - 3)(x - 5)
6. Expand the polynomial:
3[(x^2 - x - 6)(x - 5)] = 3(x^3 - 6x^2 - x + 30)
7. Final polynomial function is:
P(x) = 3x^3 - 18x^2 - 3x + 90
8. Answer:
\boxed{P(x) = 3x^3 - 18x^2 - 3x + 90}