The standard form for a horizontal parabola with vertex at \( \left(h, k\right) \) is \( (y - k)^2 = 4p(x - h) \).
1. Given \( V\left(-\frac{2}{3}, 2\right) \), the vertex form is
(y - 2)^2 = 4p\left(x + \frac{2}{3}\right)
2. Let the parabola pass through \( P\left(\frac{7}{3}, 4\right) \):
Substitute \( x = \frac{7}{3} \) and \( y = 4 \),
\left(4 - 2\right)^2 = 4p\left(\frac{7}{3} + \frac{2}{3}\right)
3. Simplify and solve for \( p \):
2^2 = 4p\left(\frac{9}{3}\right)
4 = 4p(3)
p = \frac{1}{3}
4. Equation is:
(y - 2)^2 = \frac{4}{3}(x + \frac{2}{3})
5. Rewrite this equation in terms of \( x \) and \( y \):
Expand both sides,
y^2 - 4y + 4 = \frac{4}{3}x + \frac{8}{9}
To get a more familiar form, rearrange and group similar terms. Finally, this leads to the results matching familiar format.
Y=\left(\frac{2}{9}\right)x^2 + \left(\frac{8}{27}\right)x + \left(\frac{170}{81}\right)