Question

For the polar functions r = 2Cos 20, and the radial lines, graph and calculate the area of the region R inside the curve of the function

57

likes
285 views

Answer to a math question For the polar functions r = 2Cos 20, and the radial lines, graph and calculate the area of the region R inside the curve of the function

Expert avatar
Fred
4.4
120 Answers
Para graficar la función polar r = 2\cos(2\theta), primero necesitamos identificar el rango de \theta que queremos graficar. Dado que el periodo de \cos(2\theta) es \pi, podemos graficar un ciclo completo de la función tomando valores de \theta de 0 a \frac{\pi}{2}.

Para calcular el área de la región R dentro de la curva de la función, podemos usar la fórmula del área para curvas en coordenadas polares:

A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta

Donde r = 2\cos(2\theta) y \alpha = 0, \beta = \frac{\pi}{2}.

Paso 1: Graficar la función polar para \theta en el rango de 0 a \frac{\pi}{2}:
r = 2\cos(2\theta)

Paso 2: Calcular el área de la región R dentro de la curva de la función:
A = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (2\cos(2\theta))^2 d\theta

A = \int_{0}^{\frac{\pi}{2}} 4\cos^2(2\theta) d\theta

Utilizando la identidad trigonométrica \cos^2(2\theta) = \frac{1 + \cos(4\theta)}{2}, tenemos:
A = \int_{0}^{\frac{\pi}{2}} 4\left(\frac{1 + \cos(4\theta)}{2}\right) d\theta

A = \int_{0}^{\frac{\pi}{2}} 2 + 2\cos(4\theta) d\theta

A = \left[2\theta + \frac{1}{2} \sin(4\theta)\right]_{0}^{\frac{\pi}{2}}

A = 2\cdot\frac{\pi}{2} + \frac{1}{2}\sin(2\pi) - 0 - 0

A = \pi

Entonces, el área de la región R dentro de la curva de la función es \pi.

\boxed{A = \pi}

Frequently asked questions (FAQs)
What is the limit of (x^2 + 1) / (3x - 1) as x approaches 1?
+
What is the square of the sum of the factors of 24?
+
What is the sine ratio of angle A in a right triangle given that the opposite side is 3 and the hypotenuse is 5?
+
New questions in Mathematics
8x²-30x-10x²+70x=-30x+10x²-20x²
What payment 7 months from now would be equivalent in value to a $3,300 payment due 23 months from now? The value of money is 2.7% simple interest. Round your answer to 2 decimal places. Show all work and how you arrive at the answer..
If L (-2, -5) reflected across y = -4. What are the coordinates of L?
How many different ways can a psychology student select 5 subjects from a pool of 20 subjects and assign each one to a different experiment?
The durability of a tire of a certain brand is a Normal random variable with an average of 64,000 km and a standard deviation of 9,000 km. Assuming independence between tires, what is the probability that the 4 tires on a car will last more than 58,000 km?
The thermal representation f(x) = 20 times 0.8 to the power of x is known from an exponential function f. Specify the intersection point with the y-axis
reduce the expression (7.5x 12)÷0.3
User Before the election, a poll of 60 voters found the proportion who support the Green candidate to be 25%. Calculate the 90% confidence interval for the population parameter. (Give your answers as a PERCENTAGE rounded to TWO DECIMAL PLACES: exclude any trailing zeros and DO NOT INSERT THE % SIGN) Give the lower limit of the 90% confidence interval Give the upper limit of the 90% confidence interval
Shows two blocks, masses 4.3 kg and 5.4 kg, being pushed across a frictionless surface by a 22.5-N horizontal force applied to the 4.3-kg block. A. What is the acceleration of the blocks? B. What is the force of the 4.3-kg block on the 5.4 -kg block? C. What is the force of the 5.4 -kg block on the 4.3 -kg block?
7=-4/3y -1
The simple average of 15 , 30 , 40 , and 45 is
cube root of 56
A hardware bill totals $857.63 with discounts of 5% and 3%. What is the net cost of the Material ?
Let f and g be defined in R and suppose that there exists M > 0 such that |f(x) − f(p)| ≤ M|g(x) − g(p)|, for all x. Prove that if g is continuous in p, then f will also be continuous in p.
How to convert 45 kg into grams
How to factorise 5y^2 -7y -52
Find the set of points formed by the expression 𝜋<|𝑧−4+2𝑖|<3𝜋.
2+2020202
-Please answer to the following questions: What is the price elasticity of demand? Can you explain it in your own words? What is the price elasticity of supply? Can you explain it in your own words? What is the relationship between price elasticity and position on the demand curve? For example, as you move up the demand curve to higher prices and lower quantities, what happens to the measured elasticity? How would you explain that? B-Assume that the supply of low-skilled workers is fairly elastic, but the employers’ demand for such workers is fairly inelastic. If the policy goal is to expand employment for low-skilled workers, is it better to focus on policy tools to shift the supply of unskilled labor or on tools to shift the demand for unskilled labor? What if the policy goal is to raise wages for this group? Explain your answers with supply and demand diagrams. Make sure to properly cite and reference your academic or peer-reviewed sources (minimum 2).
Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.