Question

In a factory the most important operation is painting. At the painting site there are always two workers working at the same time, although due to the physical setup, they cannot help each other. Arrivals at the painting area occur according to a Poisson process with an average arrival rate of 100 per day. Each collaborator takes an average of 27 minutes to paint an article. Lately, the excess of ongoing work is a cause for concern, so management is considering expanding the painting area and hiring a third worker. (It is assumed that the 3rd worker, after a training period, will also take an average of 27 minutes per piece). After the advancement of technology, the other option would be to buy a robot to carry out the workers' task, since it is known that the average time it will take for each piece is 10 minutes.

228

likes
1139 views

Answer to a math question In a factory the most important operation is painting. At the painting site there are always two workers working at the same time, although due to the physical setup, they cannot help each other. Arrivals at the painting area occur according to a Poisson process with an average arrival rate of 100 per day. Each collaborator takes an average of 27 minutes to paint an article. Lately, the excess of ongoing work is a cause for concern, so management is considering expanding the painting area and hiring a third worker. (It is assumed that the 3rd worker, after a training period, will also take an average of 27 minutes per piece). After the advancement of technology, the other option would be to buy a robot to carry out the workers' task, since it is known that the average time it will take for each piece is 10 minutes.

Expert avatar
Brice
4.8
113 Answers
La fábrica se enfrenta a un problema de exceso de trabajo en curso en el sitio de pintura, donde actualmente dos trabajadores trabajan de forma independiente. Para abordar esta preocupación, la fábrica está considerando dos opciones: contratar a un tercer trabajador o comprar un robot. Analicemos cuantitativamente ambas opciones. **Opción 1: Contratar a un tercer trabajador** - Con dos trabajadores, la capacidad actual del área de pintura en términos de artículos por día es el número de minutos por día dividido por el tiempo promedio que tarda cada trabajador en pintar un artículo. - Si cada trabajador dedica 27 minutos a cada artículo y hay 1440 minutos en un día, en teoría cada trabajador puede pintar hasta \( \frac{1440}{27} \) artículos por día. - Con dos trabajadores esta capacidad se duplica. La contratación de un tercer trabajador triplicaría la capacidad inicial de un solo trabajador. **Opción 2: Comprar un robot** - Si un robot tarda una media de 10 minutos en cada pieza, podría pintar \( \frac{1440}{10} \) artículos en un día. - Dependiendo de cuántos robots se compren, esto podría aumentar significativamente la capacidad. Por ejemplo, un robot ya proporcionaría una capacidad superior a la de un trabajador humano. Ahora calculemos estas capacidades para compararlas con la demanda de 100 artículos por día. También calcularemos las tasas de utilización tanto para la configuración actual como para las opciones que se están considerando. La tasa de utilización es la relación entre la tasa de demanda (\( \lambda \)) y la tasa de servicio (\( \mu \)), que es la capacidad de los trabajadores o del robot. Para un proceso de Poisson, \( \lambda = 100 \) artículos por día. Actualmente, cada trabajador tiene capacidad para pintar aproximadamente 53,33 artículos por día. Con dos trabajadores, la capacidad total es de 106,67 artículos por día. - La tasa de utilización con los dos trabajadores actuales es del 93,75%. Esto es bastante alto e indica que los trabajadores se utilizan casi al máximo, lo que se alinea con la preocupación por el exceso de trabajo en curso. - Si se contrata a un tercer trabajador, la tasa de utilización baja al 62,5%. Esta menor tasa de utilización sugiere que los trabajadores tendrán más tiempo libre y que debería aliviarse el problema del exceso de trabajo. - Para el robot, con una capacidad de 144 artículos por día, la tasa de utilización sería del 69,44%. Esto es más alto que la tasa de utilización con tres trabajadores, pero aún menos que la configuración actual. Teniendo en cuenta estos cálculos, contratar a un tercer trabajador llevaría la tasa de utilización a un nivel que generalmente se considera más eficiente y manejable en la gestión de operaciones. A menudo se apunta a una tasa de utilización de alrededor del 60-70% para equilibrar la eficiencia y la capacidad de manejar la variabilidad en las cargas de trabajo. Por otro lado, utilizar un robot también reduciría la tasa de utilización, pero no tanto como contratar a un tercer trabajador. Sin embargo, el robot puede ofrecer un rendimiento constante sin fatiga y, dependiendo del costo del robot en comparación con el salario y los beneficios de un nuevo trabajador, podría ser la opción económicamente más viable a largo plazo. La gerencia necesitaría considerar estas cifras a la luz de los costos totales involucrados, incluida la contratación y capacitación de un nuevo trabajador, la compra y mantenimiento de un robot y cualquier factor adicional como la calidad del trabajo, la confiabilidad y la flexibilidad de la fuerza laboral. frente a la automatización.

Frequently asked questions (FAQs)
Question: What is the limit as x approaches infinity of sin(x)?
+
Math Question: Find the vertex of a quadratic function with equation y = -2x^2 + 6x - 3.
+
What is the period and amplitude of the function f(x) = cos(x)?
+
New questions in Mathematics
Two fire lookouts are 12.5 km apart on a north-south line. The northern fire lookout sights a fire 20° south of East at the same time as the southern fire lookout spots it at 60° East of North. How far is the fire from the Southern lookout? Round your answer to the nearest tenth of a kilometer
The profit G of the company CHUNCHES SA is given by G(x) = 3×(40 – ×), where × is the quantity of items sold. Find the maximum profit.
In a normally distributed data set a mean of 31 where 95% of the data fall between 27.4 and 34.6, what would be the standard deviation of that data set?
A job takes 9 workers 92 hours to finish. How many hours would it take 5 workers to complete the same job?
how many arrangement can be made of 4 letters chosen from the 8 letters of the world ABBSOLUTE
A person borrows rm 1000 from a bank at an interest rate of 10%. After some time, he pays the bank rm 1900 as full and final settlement of the loan. Estimate the duration of his loan.
prove that if n odd integer then n^2+5 is even
7. Find the equation of the line passing through the points (−4,−2) 𝑎𝑛𝑑 (3,6), give the equation in the form 𝑎𝑥+𝑏𝑦+𝑐=0, where 𝑎,𝑏,𝑐 are whole numbers and 𝑎>0.
A researcher is interested in voting preferences on change of the governing constitution in a certain country controlled by two main parties A and B. A questionnaire was developed and sent to a random sample of voters. The cross tabs are as follows Favour Neutral Oppose Membership: Party A 70 90 85 Party B 50 50 155 Test at α = 0.05 whether party membership and voting preference are associated and state the conditions required for chi-square test results to be valid.
DuocUC 2) The cost C, in pesos, for the production of x meters of a certain fabric can be calculated through the function: (x+185) C(x)=81300-6x+ 20000 a) It is known that C(90) 5.344. Interpret this result. (2 points) b) Calculate C'(x) (2 points) 3 x²+111x-0.87 20000 2000 c) Function C calculates the cost while producing a maximum of 500 meters of fabric. Determine the values of x at which the cost of production is increasing and the values of x at which the cost is decreasing. (3 points) d) If a maximum of 500 meters of fabric are produced, what is the minimum production cost? (
From 1975 through 2020 the mean annual gain of the Dow Jones Industrial Average was 652. A random sample of 34 years is selected from this population. What is the probability that the mean gain for the sample was between 400 and 800? Assume the standard deviation is 1539
Determine the increase of the function y=4x−5 when the argument changes from x1=2 to x2=3
The two sides of the triangle are 12 cm and 5 cm, and the angle between the sides is 60°. Cover the area of ​​the triangle!
X~N(2.6,1.44). find the P(X<3.1)
Find the equation of a straight line that has slope 3 and passes through the point of (1, 7) . Write the equation of the line in general forms
solve R the following equation 4 x squared - 35 - 9 over x squared is equal to 0
The inner radius of a spherical ball is 13 cm. How many liters of air are in it? Justify your answer!
g(x)=3(x+8). What is the value of g(12)
Paola went on vacation for 15 days if it rained 20% of the days. How many days did it rain?
Slope (7,3) and (9,5)