Question

In a factory the most important operation is painting. At the painting site there are always two workers working at the same time, although due to the physical setup, they cannot help each other. Arrivals at the painting area occur according to a Poisson process with an average arrival rate of 100 per day. Each collaborator takes an average of 27 minutes to paint an article. Lately, the excess of ongoing work is a cause for concern, so management is considering expanding the painting area and hiring a third worker. (It is assumed that the 3rd worker, after a training period, will also take an average of 27 minutes per piece). After the advancement of technology, the other option would be to buy a robot to carry out the workers' task, since it is known that the average time it will take for each piece is 10 minutes.

228

likes
1139 views

Answer to a math question In a factory the most important operation is painting. At the painting site there are always two workers working at the same time, although due to the physical setup, they cannot help each other. Arrivals at the painting area occur according to a Poisson process with an average arrival rate of 100 per day. Each collaborator takes an average of 27 minutes to paint an article. Lately, the excess of ongoing work is a cause for concern, so management is considering expanding the painting area and hiring a third worker. (It is assumed that the 3rd worker, after a training period, will also take an average of 27 minutes per piece). After the advancement of technology, the other option would be to buy a robot to carry out the workers' task, since it is known that the average time it will take for each piece is 10 minutes.

Expert avatar
Brice
4.8
113 Answers
La fábrica se enfrenta a un problema de exceso de trabajo en curso en el sitio de pintura, donde actualmente dos trabajadores trabajan de forma independiente. Para abordar esta preocupación, la fábrica está considerando dos opciones: contratar a un tercer trabajador o comprar un robot. Analicemos cuantitativamente ambas opciones. **Opción 1: Contratar a un tercer trabajador** - Con dos trabajadores, la capacidad actual del área de pintura en términos de artículos por día es el número de minutos por día dividido por el tiempo promedio que tarda cada trabajador en pintar un artículo. - Si cada trabajador dedica 27 minutos a cada artículo y hay 1440 minutos en un día, en teoría cada trabajador puede pintar hasta \( \frac{1440}{27} \) artículos por día. - Con dos trabajadores esta capacidad se duplica. La contratación de un tercer trabajador triplicaría la capacidad inicial de un solo trabajador. **Opción 2: Comprar un robot** - Si un robot tarda una media de 10 minutos en cada pieza, podría pintar \( \frac{1440}{10} \) artículos en un día. - Dependiendo de cuántos robots se compren, esto podría aumentar significativamente la capacidad. Por ejemplo, un robot ya proporcionaría una capacidad superior a la de un trabajador humano. Ahora calculemos estas capacidades para compararlas con la demanda de 100 artículos por día. También calcularemos las tasas de utilización tanto para la configuración actual como para las opciones que se están considerando. La tasa de utilización es la relación entre la tasa de demanda (\( \lambda \)) y la tasa de servicio (\( \mu \)), que es la capacidad de los trabajadores o del robot. Para un proceso de Poisson, \( \lambda = 100 \) artículos por día. Actualmente, cada trabajador tiene capacidad para pintar aproximadamente 53,33 artículos por día. Con dos trabajadores, la capacidad total es de 106,67 artículos por día. - La tasa de utilización con los dos trabajadores actuales es del 93,75%. Esto es bastante alto e indica que los trabajadores se utilizan casi al máximo, lo que se alinea con la preocupación por el exceso de trabajo en curso. - Si se contrata a un tercer trabajador, la tasa de utilización baja al 62,5%. Esta menor tasa de utilización sugiere que los trabajadores tendrán más tiempo libre y que debería aliviarse el problema del exceso de trabajo. - Para el robot, con una capacidad de 144 artículos por día, la tasa de utilización sería del 69,44%. Esto es más alto que la tasa de utilización con tres trabajadores, pero aún menos que la configuración actual. Teniendo en cuenta estos cálculos, contratar a un tercer trabajador llevaría la tasa de utilización a un nivel que generalmente se considera más eficiente y manejable en la gestión de operaciones. A menudo se apunta a una tasa de utilización de alrededor del 60-70% para equilibrar la eficiencia y la capacidad de manejar la variabilidad en las cargas de trabajo. Por otro lado, utilizar un robot también reduciría la tasa de utilización, pero no tanto como contratar a un tercer trabajador. Sin embargo, el robot puede ofrecer un rendimiento constante sin fatiga y, dependiendo del costo del robot en comparación con el salario y los beneficios de un nuevo trabajador, podría ser la opción económicamente más viable a largo plazo. La gerencia necesitaría considerar estas cifras a la luz de los costos totales involucrados, incluida la contratación y capacitación de un nuevo trabajador, la compra y mantenimiento de un robot y cualquier factor adicional como la calidad del trabajo, la confiabilidad y la flexibilidad de la fuerza laboral. frente a la automatización.

Frequently asked questions (FAQs)
What is the result of multiplying the vectors (2, -3) and (4, 5)?
+
Math question: What is the radius of a circle described by the function x^2 + y^2 = 25?
+
Question: In a triangle ABC, if angles A and B are equal, and sides AB and AC are equal, what can we conclude about triangle ABC?
+
New questions in Mathematics
a to the power of 2 minus 16 over a plus 4, what is the result?
5 squirrels were found to have an average weight of 9.3 ounces with a sample standard deviation is 1.1. Find the 95% confidence interval of the true mean weight
³√12 x ⁶√96
(2b) to the 1/4th power. Write the expression in radical form.
-0.15/32.6
How long will it take for $900 to become $5000 at an annual rate of 11.15% compounded bimonthly?
A construction company is working on two projects: house construction and building construction. Each house requires 4 weeks of work and produces a profit of $50,000. Each building requires 8 weeks of work and produces a profit of $100,000. The company has a total of 24 work weeks available. Furthermore, it is known that at least 2 houses and at least 1 building must be built to meet the demand. The company wants to maximize its profits and needs to determine how many houses and buildings it should build to meet demand and maximize profits, given time and demand constraints.
How many anagrams of the word STROMEC there that do not contain STROM, MOST, MOC or CEST as a subword? By subword is meant anything that is created by omitting some letters - for example, the word EMROSCT contains both MOC and MOST as subwords.
Three squares have a total area of 35.25 𝑐𝑚2 . The larger square has twice the side-length of the middle-sized square. The smaller square has its side length exactly 0.5 cm smaller than the middle-sixed square. Find the side lengths of each of the three squares.
7. Find the equation of the line passing through the points (−4,−2) 𝑎𝑛𝑑 (3,6), give the equation in the form 𝑎𝑥+𝑏𝑦+𝑐=0, where 𝑎,𝑏,𝑐 are whole numbers and 𝑎>0.
A warehouse employs 23 workers on first​ shift, 19 workers on second​ shift, and 12 workers on third shift. Eight workers are chosen at random to be interviewed about the work environment. Find the probability of choosing exactly five first ​-shift workers.
Exercise 1 An ejidal association wishes to determine the distribution for the three different crops that it can plant for the next season on its available 900 hectares. Information on the total available and how many resources are required for each hectare of cultivation is shown in the following tables: Total available resource Water 15,000 m3 Fertilizer 5,000 kg Labor 125 day laborers Requirements per cultivated hectare Corn Soybeans Wheat Water 15 25 20 Fertilizer 5 8 7 Labor** 1/8 1/5 1/4 *The data in fraction means that with one day laborer it will be possible to care for 8, 5 and 4 hectares respectively. * Sales of crops 1 and 3, according to information from the Department of Agriculture, are guaranteed and exceed the capacity of the cooperative. However, soybeans must be limited to a maximum of 150 hectares. On the other hand, the profits for each hectare of crop obtained are estimated at: $7,500 for corn, $8,500 for soybeans and $8,000 for wheat. The objectives are to determine: • How many hectares of each crop must be allocated so that the profit is maximum. R= • The estimated profits for the ejidal cooperative in the next growing season. R=
Let A, B, C and D be sets such that | A| = |C| and |B| = |D|. Prove that |A × B| = |C × D|
How to do 15 x 3304
7.57 Online communication. A study suggests that the average college student spends 10 hours per week communicating with others online. You believe that this is an underestimate and decide to collect your own sample for a hypothesis test. You randomly sample 60 students from your dorm and find that on average they spent 13.5 hours a week communicating with others online. A friend of yours, who offers to help you with the hypothesis test, comes up with the following set of hypotheses. Indicate any errors you see. H0 :x ̄<10hours HA : x ̄ > 13.5 hours
effectiveness of fiscal and monetary policy under closed and open economies
If the mean of the following numbers is 17, find the c value. Produce an algebraic solution. Guess and check is unacceptable. 12, 18, 21, c, 13
y′ = 2x + 3y x′ = 7x − 4y x(0) = 2 y(0) = −1 sisteminin ¸c¨oz¨um¨un¨u bulunuz. (Lineer Denk. Sis.)
Recall that with base- ten blocks, 1 long = 10 units, 1flat = 10 long, and a block = 1 unit. Then what number does 5 flat, 17long and 5 units represent represent ?
A person travels by car from one city to another with different constant speeds between pairs of cities. She drives for 55.0 min at 100.0 km/h, 14.0 min at 65.0 km/h, and 45.0 min at 60.0 km/h and spends 20.0 min eating lunch and buying gas. (a) Determine the average speed for the trip.