Step 1: Identify the function and interval: y = x - 1; \quad [-1, 1]
Step 2: Integrate the function over the interval.
\int_{-1}^{1} (x - 1) \, dx
Step 3: Find the antiderivative:
\int (x - 1) \, dx = \frac{x^2}{2} - x
Step 4: Evaluate from -1 to 1:
\left[ \frac{x^2}{2} - x \right]_{-1}^{1} = \left( \frac{1^2}{2} - 1 \right) - \left( \frac{(-1)^2}{2} - (-1) \right)
Step 5: Simplify the terms inside the brackets:
\left( \frac{1}{2} - 1 \right) - \left( \frac{1}{2} + 1 \right) = -\frac{1}{2} - \frac{3}{2} = -2
Step 6: Take the absolute value of the result to get the total area (since area cannot be negative):
\left| -2 \right| = 2
Therefore, the answer is:
2