1. Find the slope ( m ) using the formula:
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - (-1)}{-1 - 6} = \frac{3}{-7} = -\frac{3}{7}
2. Use the point-slope form of the equation y - y_1 = m(x - x_1) with the point (6, -1) :
y - (-1) = -\frac{3}{7}(x - 6)
3. Simplify the equation to get the slope-intercept form y = mx + b :
y + 1 = -\frac{3}{7}x + \frac{18}{7}
4. Subtract 1 from both sides to get y alone:
y = -\frac{3}{7}x + \frac{18}{7} - 1
5. Express 1 as \frac{7}{7} to have a common denominator:
y = -\frac{3}{7}x + \frac{18}{7} - \frac{7}{7}
6. Subtract the fractions:
y = -\frac{3}{7}x + \frac{11}{7}
7. The final equation in slope-intercept form is:
Answer: y=-\frac{3}{7}x+\frac{11}{7}