Solution:
1. Given:
- Radius: 3
- Center: (1, -1, a)
- Contains the point: (0, 0, 1)
2. Use the distance formula to find the relationship between a and the given point:
 \sqrt{(0 - 1)^2 + (0 + 1)^2 + (1 - a)^2} = 3 
3. Simplify the distance equation:
 \sqrt{1 + 1 + (1 - a)^2} = 3 
4. Square both sides to remove the square root:
 1 + 1 + (1 - a)^2 = 9 
5. Simplify the equation:
 2 + (1 - a)^2 = 9 
 (1 - a)^2 = 7 
 1 - a = \pm \sqrt{7} 
6. Solve for a:
- Case 1:  1 - a = \sqrt{7} 
 a = 1 - \sqrt{7} 
- Case 2:  1 - a = -\sqrt{7} 
 a = 1 + \sqrt{7} 
Since a > 0, we choose  a = 1 + \sqrt{7} .
7. Write the equation of the sphere:
- The general formula for the equation of a sphere with center (h, k, l) and radius $r is: (x - h)^2 + (y - k)^2 + (z - l)^2 = r^2 - Substitute  h = 1 ,  k = -1 ,  l = a = 1 + \\sqrt{7} , and  r = 3 : (x - 1)^2 + (y + 1)^2 + (z - (1 + \\sqrt{7}))^2 = 9 Thus, the equation of the sphere is: (x - 1)^2 + (y + 1)^2 + (z - (1 + \\sqrt{7}))^2 = 9 $$