Question

Draw the shape of region D limited by the xy=1 curve, y=x and x=e lines. Calculate the mass of the plate with density σ(x,y)=xy placed on this region.

199

likes
995 views

Answer to a math question Draw the shape of region D limited by the xy=1 curve, y=x and x=e lines. Calculate the mass of the plate with density σ(x,y)=xy placed on this region.

Expert avatar
Brice
4.8
113 Answers
Verilen eğrilerin kesiştiği noktaları bulmak için;
1. y=x doğrusu ile xy=1 eğrisini çözelim.
2. x=e doğrusu ile xy=1 eğrisini çözelim.

Noktaları bulduktan sonra, bu üç doğru arasında kalan bölgenin şeklini çizeceğiz.

1. y=x doğrusu ile xy=1 eğrisini çözelim:
y=x \quad ve \quad xy=1 eşitlerini birbirine eşitleyerek çözelim:
x\cdot x = 1 \Rightarrow x^2 = 1 \Rightarrow x = 1
x = 1 değerini y=x doğrusuna koyarsak, y=1 olur.
Bu durumda kesişim noktası (1, 1) olur.

2. x=e doğrusu ile xy=1 eğrisini çözelim:
x=e \quad ve \quad xy=1 eşitlerini birbirine eşitleyerek çözelim:
e\cdot y = 1
y = \frac{1}{e}

Bu durumda kesişim noktası (e, \frac{1}{e}) olur.

Şimdi bu üç noktayı birbirleriyle birleştirerek, verilen bölgenin şeklini çizelim:
- (1, 1) noktası y=x doğrusu ve xy=1 eğrisiyle,
- (e, \frac{1}{e}) noktası x=e doğrusu ve xy=1 eğrisiyle,
- (e, \frac{1}{e}) ve (1, 1) noktaları y=x doğrusu ile birleştirilerek oluşturulur.

Şimdi bu bölgenin alanını hesaplayacağız. Bölge, bir üçgen şeklinde olduğundan, alanını bulmak için taban uzunluğunu ve yüksekliği hesaplayacağız:
Taban uzunluğu: e - 1
Yükseklik: \frac{1}{e} - 1

Bu durumda, bölgenin alanı:
A = \frac{1}{2} \cdot \text{Taban uzunluğu} \cdot \text{Yükseklik} = \frac{1}{2} \cdot (e - 1) \cdot \left(\frac{1}{e} - 1 \right)

Şimdi bu bölge üzerine yerleştirilen \sigma(x,y)=xy yoğunluklu levhanın kütlesini hesaplayalım. Bölgenin alanını kullanarak bu işlemi gerçekleştireceğiz:
\text{Kütle} = \iint_D \sigma(x,y) \, dA = \iint_D xy \, dA
\text{Kütle} = \int_1^e \int_1^\frac{1}{x} xy \, dydx

Yukarıdaki denklemi çözerek kütleyi hesaplayın.

\textbf{Yanıt:}
\text{Bölgenin Alanı: } A = \frac{1}{2} \cdot (e - 1) \cdot \left(\frac{1}{e} - 1 \right)
\text{Levhanın Kütle: } \text{Kütle} = \int_1^e \int_1^\frac{1}{x} xy \, dydx

Frequently asked questions (FAQs)
What is the standard deviation of a data set with values 5, 10, 15, and 20?
+
Question: Obtain the fifth derivative of f(x) = 3x^4 - 2x^3 + 5x^2 - 7x + 2.
+
What is the period of the trig function f(x) = 2cos(3x) - 1?
+
New questions in Mathematics
Y=-x^2-8x-15 X=-7
What is the amount of interest of 75,000 at 3.45% per year, at the end of 12 years and 6 months?
(6.2x10^3)(3x10^-6)
The main cost of a 5 pound bag of shrimp is $47 with a variance of 36 if a sample of 43 bags of shrimp is randomly selected, what is the probability that the sample mean with differ from the true mean by less than $1.4
∫ √9x + 1 dx
A mutual fund manager has a $350 million portfolio with a beta of 1.10. The risk-free rate is 3.5%, and the market risk premium is 6.00%. The manager expects to receive an additional $150 million which she plans to invest in several different stocks. After investing the additional funds, she wants to reduce the portfolio’s risk level so that once the additional funds are invested the portfolio’s required return will be 9.20%. What must the average beta of the new stocks added to the portfolio be (not the new portfolio’s beta) to achieve the desired required rate of return?
Use a pattern to prove that (-2)-(-3)=1
A machine produces 255 bolts in 24 minutes. At the same rate, how many bolts would be produced in 40 minutes?
Take the limit of (sin(x-4))/(tan(x^2 - 16) as x approaches 4.
Find the zero of the linear function 8x + 24 = 0
Find the vertex F(x)=x^2-10x
What is the total amount due and the amount of interest on a 3-year loan of $1,000 at a simple interest rate of 12% per year?
How do you convert a fraction to a decimal
22. Let [AB] be a chord in a circle C, and k a circle which is internally tangent to the circle C at a point P and to the chord [AB] at a point Q. Show that the line P Q passes through the midpoint of the arc AB opposite to the arc APB.
A 20-year old hopes to retire by age 65. To help with future expenses, they invest $6 500 today at an interest rate of 6.4% compounded annually. At age 65, what is the difference between the exact accumulated value and the approximate accumulated value (using the Rule of 72)?
56 × 12 = 672. How should you adjust this answer 672 to determine 57 × 12? a) The answer increases by 1 b) The answer increases by 57 c) The answer increases by 56 d) The answer increases by 12
The slope of the tangent line to the curve f(x)=4tan x at the point (π/4,4)
Define excel and why we use it?
Triangle ABC has AB=AC and angle BAC =X, with X being less than 60 degrees. Point D lies on AB such that CB = CD Point E lies on AC such that CE= DE Determine angle DEC in terms of X
x(squared) -8x=0