Question

Draw the shape of region D limited by the xy=1 curve, y=x and x=e lines. Calculate the mass of the plate with density σ(x,y)=xy placed on this region.

199

likes
995 views

Answer to a math question Draw the shape of region D limited by the xy=1 curve, y=x and x=e lines. Calculate the mass of the plate with density σ(x,y)=xy placed on this region.

Expert avatar
Brice
4.8
113 Answers
Verilen eğrilerin kesiştiği noktaları bulmak için;
1. y=x doğrusu ile xy=1 eğrisini çözelim.
2. x=e doğrusu ile xy=1 eğrisini çözelim.

Noktaları bulduktan sonra, bu üç doğru arasında kalan bölgenin şeklini çizeceğiz.

1. y=x doğrusu ile xy=1 eğrisini çözelim:
y=x \quad ve \quad xy=1 eşitlerini birbirine eşitleyerek çözelim:
x\cdot x = 1 \Rightarrow x^2 = 1 \Rightarrow x = 1
x = 1 değerini y=x doğrusuna koyarsak, y=1 olur.
Bu durumda kesişim noktası (1, 1) olur.

2. x=e doğrusu ile xy=1 eğrisini çözelim:
x=e \quad ve \quad xy=1 eşitlerini birbirine eşitleyerek çözelim:
e\cdot y = 1
y = \frac{1}{e}

Bu durumda kesişim noktası (e, \frac{1}{e}) olur.

Şimdi bu üç noktayı birbirleriyle birleştirerek, verilen bölgenin şeklini çizelim:
- (1, 1) noktası y=x doğrusu ve xy=1 eğrisiyle,
- (e, \frac{1}{e}) noktası x=e doğrusu ve xy=1 eğrisiyle,
- (e, \frac{1}{e}) ve (1, 1) noktaları y=x doğrusu ile birleştirilerek oluşturulur.

Şimdi bu bölgenin alanını hesaplayacağız. Bölge, bir üçgen şeklinde olduğundan, alanını bulmak için taban uzunluğunu ve yüksekliği hesaplayacağız:
Taban uzunluğu: e - 1
Yükseklik: \frac{1}{e} - 1

Bu durumda, bölgenin alanı:
A = \frac{1}{2} \cdot \text{Taban uzunluğu} \cdot \text{Yükseklik} = \frac{1}{2} \cdot (e - 1) \cdot \left(\frac{1}{e} - 1 \right)

Şimdi bu bölge üzerine yerleştirilen \sigma(x,y)=xy yoğunluklu levhanın kütlesini hesaplayalım. Bölgenin alanını kullanarak bu işlemi gerçekleştireceğiz:
\text{Kütle} = \iint_D \sigma(x,y) \, dA = \iint_D xy \, dA
\text{Kütle} = \int_1^e \int_1^\frac{1}{x} xy \, dydx

Yukarıdaki denklemi çözerek kütleyi hesaplayın.

\textbf{Yanıt:}
\text{Bölgenin Alanı: } A = \frac{1}{2} \cdot (e - 1) \cdot \left(\frac{1}{e} - 1 \right)
\text{Levhanın Kütle: } \text{Kütle} = \int_1^e \int_1^\frac{1}{x} xy \, dydx

Frequently asked questions (FAQs)
Math question: What is the factored form of the quadratic expression 4x^2 + 8x + 3?
+
What are the positive integer solutions for the equation a^n + b^n = c^n, where n>2 according to Fermat's Theorem?
+
Question: What is the maximum value that the function f(x) = 3x^2 - 4x + 1 can reach on the interval [0, 5]?
+
New questions in Mathematics
A normally distributed population has a mean of 118 with a standard deviation of 18. What score separates the lowest 72% of the distribution from the rest of the scores?
What payment 7 months from now would be equivalent in value to a $3,300 payment due 23 months from now? The value of money is 2.7% simple interest. Round your answer to 2 decimal places. Show all work and how you arrive at the answer..
7273736363-8
what is the annual rate on ​$525 at 0.046​% per day for 3 months?
4x-3y=5;x+2y=4
7/6-(-1/9)
The durability of a tire of a certain brand is a Normal random variable with an average of 64,000 km and a standard deviation of 9,000 km. Assuming independence between tires, what is the probability that the 4 tires on a car will last more than 58,000 km?
show step by step simplification: (¬𝑑∨((¬b∧c)∨(b∧¬c)))∧((𝑎 ∧ 𝑏) ∨ (¬𝑎 ∧ ¬𝑏))∧(¬𝑐∨((¬𝑑∧𝑎)∨(𝑑∧¬𝑎)))
John he’s going to the carnival with his friends. He spends $25 on an admission ticket. He buys 10 games at X dollars each and two boxes of popcorn at Y dollars each. Write an expression to show the total cost of admission game, tickets and popcorn.
The two sides of the triangle are 12 cm and 5 cm, and the angle between the sides is 60°. Cover the area of ​​the triangle!
1. A capital of $3,831 was lent, and it has produced interest of $840 from 05-12-2022 to 1-12-2023. At what annual simple interest rate was the capital lent?
Two particles of electrical charges Q1=3.8×10-⁶C and q,=4.4×10-⁶C are separated in vacuum by a distance of 4.0.10-⁸ m. Since K=9.0.10⁹ N.m²/C², the intensity of the interaction force between them, in newtons, is?
48 kg of 30% sulfuric acid in a mixture of 10% and 40% sulfuric acid arose. How many kilograms were each of the original solutions?
A 20,000 kg school bus is moving at 30 km per hour on a straight road. At that moment, it applies the brakes until it comes to a complete stop after 15 seconds. Calculate the acceleration and the force acting on the body.
What is the total amount due and the amount of interest on a 3-year loan of $1,000 at a simple interest rate of 12% per year?
If sin A=0.3 and cos A=0.6, determine the value of tan A.
x²-7x+12=0
9n + 7(-8 + 4k) use k=2 and n=3
12[4 + (8 + 7) + 5]
Mark is gluing a ribbon around the sides of a picture frame. The frame is 11 inches long and 7 includes wide. How much ribbon does Mark need?