Question

Draw the shape of region D limited by the xy=1 curve, y=x and x=e lines. Calculate the mass of the plate with density σ(x,y)=xy placed on this region.

199

likes
995 views

Answer to a math question Draw the shape of region D limited by the xy=1 curve, y=x and x=e lines. Calculate the mass of the plate with density σ(x,y)=xy placed on this region.

Expert avatar
Brice
4.8
113 Answers
Verilen eğrilerin kesiştiği noktaları bulmak için;
1. y=x doğrusu ile xy=1 eğrisini çözelim.
2. x=e doğrusu ile xy=1 eğrisini çözelim.

Noktaları bulduktan sonra, bu üç doğru arasında kalan bölgenin şeklini çizeceğiz.

1. y=x doğrusu ile xy=1 eğrisini çözelim:
y=x \quad ve \quad xy=1 eşitlerini birbirine eşitleyerek çözelim:
x\cdot x = 1 \Rightarrow x^2 = 1 \Rightarrow x = 1
x = 1 değerini y=x doğrusuna koyarsak, y=1 olur.
Bu durumda kesişim noktası (1, 1) olur.

2. x=e doğrusu ile xy=1 eğrisini çözelim:
x=e \quad ve \quad xy=1 eşitlerini birbirine eşitleyerek çözelim:
e\cdot y = 1
y = \frac{1}{e}

Bu durumda kesişim noktası (e, \frac{1}{e}) olur.

Şimdi bu üç noktayı birbirleriyle birleştirerek, verilen bölgenin şeklini çizelim:
- (1, 1) noktası y=x doğrusu ve xy=1 eğrisiyle,
- (e, \frac{1}{e}) noktası x=e doğrusu ve xy=1 eğrisiyle,
- (e, \frac{1}{e}) ve (1, 1) noktaları y=x doğrusu ile birleştirilerek oluşturulur.

Şimdi bu bölgenin alanını hesaplayacağız. Bölge, bir üçgen şeklinde olduğundan, alanını bulmak için taban uzunluğunu ve yüksekliği hesaplayacağız:
Taban uzunluğu: e - 1
Yükseklik: \frac{1}{e} - 1

Bu durumda, bölgenin alanı:
A = \frac{1}{2} \cdot \text{Taban uzunluğu} \cdot \text{Yükseklik} = \frac{1}{2} \cdot (e - 1) \cdot \left(\frac{1}{e} - 1 \right)

Şimdi bu bölge üzerine yerleştirilen \sigma(x,y)=xy yoğunluklu levhanın kütlesini hesaplayalım. Bölgenin alanını kullanarak bu işlemi gerçekleştireceğiz:
\text{Kütle} = \iint_D \sigma(x,y) \, dA = \iint_D xy \, dA
\text{Kütle} = \int_1^e \int_1^\frac{1}{x} xy \, dydx

Yukarıdaki denklemi çözerek kütleyi hesaplayın.

\textbf{Yanıt:}
\text{Bölgenin Alanı: } A = \frac{1}{2} \cdot (e - 1) \cdot \left(\frac{1}{e} - 1 \right)
\text{Levhanın Kütle: } \text{Kütle} = \int_1^e \int_1^\frac{1}{x} xy \, dydx

Frequently asked questions (FAQs)
Question: Evaluate log(base 3) of 9 plus log(base 2) of 8.
+
What is the equivalent value, in radians, of an angle that measures 60 degrees?
+
What is the Rule for congruence of triangles when two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle?
+
New questions in Mathematics
2(2+2x)=12
5 squirrels were found to have an average weight of 9.3 ounces with a sample standard deviation is 1.1. Find the 95% confidence interval of the true mean weight
1 plus 1
How long will it take for $900 to become $5000 at an annual rate of 11.15% compounded bimonthly?
If you randomly selected one person from the 900 subjects in this study, what is the probability that the person exhibits the minimum BMI?
15/5+7-5
I want you to solve this problem as a grade sixth pupil in primary school: 8 Pigs ate 6 bags of fee in 20 days. How long will it take 10 pigs to eat 15 bags of feed eating at the same rate?
find f(x) for f'(x)=3x+7
. What will be the osmotic pressure of a solution that was prepared at 91°F by dissolving 534 grams of aluminum hydroxide in enough water to generate 2.784 ml of solution.
using the math and science known about the jefferson river bridge Find a truss in use and develop a load diagram. Use a load of 50 lb on each joint along the bottom of the truss for a truss that actrs as a bridge and along the top joints for a truss that acts as a roof
How to do 15 x 3304
7=-4/3y -1
A teacher has 25 red and yellow counters altogether. She has 4 times as many red counters than yellow counters. How many yellow counters does the teacher have?
48 kg of 30% sulfuric acid in a mixture of 10% and 40% sulfuric acid arose. How many kilograms were each of the original solutions?
Find the area of a triangle ABC when m<C = 14 degrees, a = 5.7 miles, and b = 9.3 miles.
Pablo has a balance of $440,000 and 2/5 of the money is used to pay bills. How much money do you have left after paying the bills?
(6²-14)÷11•(-3)
A factory produces glass for windows. The thickness X of an arbitrarily selected pane of glass is assumed to be Normally distributed with expectation μ = 4.10 and standard deviation σ = 0.04. Expectation and Standard deviation is measured in millimeters. What is the probability that an arbitrary route has a thickness less than 4.00 mm?
Solve the system of equations by the addition method. 0.01x-0.08y=-0.1 0.2x+0.6y=0.2
The domain of the function f(x)=x+7x2−144 is (−∞,), ( ,), and ( , ∞).