Given:
n = 16
p = 0.35
P(X = k) = \binom{16}{k} (0.35)^k (0.65)^{16-k}
Calculate \( P(X = 1) \):
\binom{16}{1}(0.35)^1(0.65)^{15}=16\cdot0.35\cdot(0.65)^{15}\approx0.0087
Calculate \( P(X = 2) \):
\binom{16}{2}(0.35)^2(0.65)^{14}=\frac{16 \cdot15}{2}\cdot(0.35)^2\cdot(0.65)^{14}\approx0.0353
Calculate \( P(X = 3) \):
\binom{16}{3}(0.35)^3(0.65)^{13}=\frac{16 \cdot15 \cdot14}{6}\cdot(0.35)^3\cdot(0.65)^{13}\approx0.0190
Sum the probabilities:
P(X=1)+P(X=2)+P(X=3)=0.063
Therefore, the probability of seeing 1, 2, or 3 successes is:
\boxed{0.063}