Question

It is claimed that the average score earned by high school graduates in the state of Virginia on the SAT test exceeds 500 points. A sample of 70 high school graduates in the state of Virginia obtained an average of 530 points. We assume the population standard deviation to be 125 points. Test at the 5% level of significance the statement made about the average points on the SAT test described in the previous case.

286

likes
1428 views

Answer to a math question It is claimed that the average score earned by high school graduates in the state of Virginia on the SAT test exceeds 500 points. A sample of 70 high school graduates in the state of Virginia obtained an average of 530 points. We assume the population standard deviation to be 125 points. Test at the 5% level of significance the statement made about the average points on the SAT test described in the previous case.

Expert avatar
Andrea
4.5
83 Answers
Para probar si el promedio de puntos obtenidos por graduados de bachillerato en el estado de Virginia en la prueba SAT excede los 500 puntos, utilizamos la prueba de hipótesis.

Dados:

- $\mu$: promedio de puntos obtenidos por graduados de bachillerato en el estado de Virginia para la prueba SAT.
- $n = 70$: tamaño de la muestra.
- $\bar{x} = 530$: promedio de puntos obtenidos en la muestra.
- $\sigma = 125$: desviación estándar poblacional.
- Nivel de significancia $\alpha = 0.05$.

Las hipótesis nula y alternativa serán:

$H_0: \mu \leq 500$

$H_1: \mu > 500$

Para calcular el estadístico de prueba, utilizamos la fórmula:

Z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}

Donde:

- $\bar{x}$ es el promedio de la muestra,
- $\mu_0 = 500$ es el promedio afirmado en la hipótesis nula,
- $\sigma$ es la desviación estándar poblacional, y
- $n$ es el tamaño de la muestra.

Sustituyendo los valores dados:

Z = \frac{530 - 500}{\frac{125}{\sqrt{70}}} \approx \frac{30}{14.978} \approx 2.003

Para un nivel de significancia del 5% y considerando que nuestra hipótesis alternativa es del tipo $>$ (una cola), buscamos el valor crítico de la distribución normal estándar (z-score) que deja un área de cola derecha de 0.05, que es aproximadamente 1.645.

Como 2.003 > 1.645, rechazamos la hipótesis nula. Por lo tanto, hay suficiente evidencia para afirmar que el promedio de puntos obtenidos por graduados de bachillerato en el estado de Virginia para la prueba SAT excede los 500 puntos.

$\boxed{\text{Respuesta: Con un nivel de significancia del 5%, se rechaza la hipótesis nula. Hay evidencia suficiente para afirmar que el promedio de puntos obtenidos excede los 500 puntos.}}$

Frequently asked questions (FAQs)
What is the sum of 15 and 39?
+
Question: What is the precise mathematical definition of an integral in terms of limits of sums?
+
What is the length of the perpendicular bisector in a triangle with side lengths 12, 16, and 20?
+
New questions in Mathematics
A car tire can rotate at a frequency of 3000 revolutions per minute. Given that a typical tire radius is 0.5 m, what is the centripetal acceleration of the tire?
For a temperature range between -3 degrees Celsius to 5 degrees Celsius, what is the temperature range in degrees Farenheight
224 × (6÷8)
Sean must chose a 6- digit PIN number for his online banking account.Each digit can be chosen from 0 to 9. How many different possible PIN numbers can sean chose.
calculate the normal vector of line y = -0.75x + 3
The sum of two numbers is equal to 58 and the largest exceeds by at least 12. Find the two numbers
4x/2+5x-3/6=7/8-1/4-x
Let r: x - y 5 = 0. Determine a general equation of the line s parallel to the line r, which forms an isosceles triangle with area 8 with the line x = 5 and the Ox axis.
determine the polynomial F of degree 2 that interpolates. f at points (0;1) (2;5) (4;6). calculate F(0.8). Note: Using the polynomial expression with difference operator.
The following table shows the frequency of care for some animal species in a center specializing in veterinary dentistry. Species % Dog 52.8 Cat 19.2 Chinchilla 14.4 Marmoset 6.2 Consider that the center only serves 10 animals per week. For a given week, what is the probability that at least two are not dogs? ATTENTION: Provide the answer to exactly FOUR decimal places
X~N(2.6,1.44). find the P(X<3.1)
Fill in the P(X-x) values to give a legitimate probability distribution for the discrete random variable X, whose possible values are -5 ,3 , 4, 5 , and 6.
MAKING AN ARGUMENT You use synthetic division to divide f(x) by (x − a) and find that the remainder equals 15. Your friend concludes that f (15) = a. Is your friend correct? Explain your reasoning.
A car travels 211 miles on 15 gallons of gasoline. The best estimate of the car’s miles per gallon is?
In poker, a full house consists of five cards, where two of the cards have the same number (or letter) and the remaining three also have the same number (or letter) as each other (but not as the previous two cards). Use a search engine or Wikipedia to understand the concept better if necessary. In how many different ways can one obtain a full house?
We plan to test whether the mean mRNA expression level differs between two strains of yeast, for each of 8,000 genes. We will measure the expression levels of each gene, in n samples of strain 1 and m samples of strain 2. We plan to compute a P-value for each gene, using an unpaired two-sample t-test for each gene (the particular type of test does not matter). a) What are the null hypotheses in these tests (in words)? [2] b) If, in fact, the two strains are identical, how many of these tests do we expect to produce a P-value exceeding 1/4? [2]
y′ = 2x + 3y x′ = 7x − 4y x(0) = 2 y(0) = −1 sisteminin ¸c¨oz¨um¨un¨u bulunuz. (Lineer Denk. Sis.)
Let I be an interval and let f : I → R be a continuous function such that f(I) ⊂ Q. Show (in symbols) that f is constant.
Carmen's age was twice as old as Luis was when Carmen was Luis's age. When Luis is Carmen's age, their ages will add up to 112.
Find the distance from the point (2,-1) to the line 2x-5y+10=0