Question

It is claimed that the average score earned by high school graduates in the state of Virginia on the SAT test exceeds 500 points. A sample of 70 high school graduates in the state of Virginia obtained an average of 530 points. We assume the population standard deviation to be 125 points. Test at the 5% level of significance the statement made about the average points on the SAT test described in the previous case.

286

likes
1428 views

Answer to a math question It is claimed that the average score earned by high school graduates in the state of Virginia on the SAT test exceeds 500 points. A sample of 70 high school graduates in the state of Virginia obtained an average of 530 points. We assume the population standard deviation to be 125 points. Test at the 5% level of significance the statement made about the average points on the SAT test described in the previous case.

Expert avatar
Andrea
4.5
84 Answers
Para probar si el promedio de puntos obtenidos por graduados de bachillerato en el estado de Virginia en la prueba SAT excede los 500 puntos, utilizamos la prueba de hipótesis.

Dados:

- $\mu$: promedio de puntos obtenidos por graduados de bachillerato en el estado de Virginia para la prueba SAT.
- $n = 70$: tamaño de la muestra.
- $\bar{x} = 530$: promedio de puntos obtenidos en la muestra.
- $\sigma = 125$: desviación estándar poblacional.
- Nivel de significancia $\alpha = 0.05$.

Las hipótesis nula y alternativa serán:

$H_0: \mu \leq 500$

$H_1: \mu > 500$

Para calcular el estadístico de prueba, utilizamos la fórmula:

Z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}

Donde:

- $\bar{x}$ es el promedio de la muestra,
- $\mu_0 = 500$ es el promedio afirmado en la hipótesis nula,
- $\sigma$ es la desviación estándar poblacional, y
- $n$ es el tamaño de la muestra.

Sustituyendo los valores dados:

Z = \frac{530 - 500}{\frac{125}{\sqrt{70}}} \approx \frac{30}{14.978} \approx 2.003

Para un nivel de significancia del 5% y considerando que nuestra hipótesis alternativa es del tipo $>$ (una cola), buscamos el valor crítico de la distribución normal estándar (z-score) que deja un área de cola derecha de 0.05, que es aproximadamente 1.645.

Como 2.003 > 1.645, rechazamos la hipótesis nula. Por lo tanto, hay suficiente evidencia para afirmar que el promedio de puntos obtenidos por graduados de bachillerato en el estado de Virginia para la prueba SAT excede los 500 puntos.

$\boxed{\text{Respuesta: Con un nivel de significancia del 5%, se rechaza la hipótesis nula. Hay evidencia suficiente para afirmar que el promedio de puntos obtenidos excede los 500 puntos.}}$

Frequently asked questions (FAQs)
What percent is 25 of 80?
+
Question: What is the derivative of the function f(x) = ∫(0 to x) t^3 + 2t^2 dt?
+
What is the derivative of the function f(x) = 2x^3 + 5x^2 - 3x + 4?
+
New questions in Mathematics
a runner wants to build endurance by running 9 mph for 20 min. How far will the runner travel in that time period?
P is a polynomial defined by P(x) = 4x^3 - 11×^2 - 6x + 9. Two factors are (x - 3) and (x + 1). Rewrite the expression for P as the product of linear factors.
Consider numbers from 1 to 2023. We delete 3 consecutive numbers so, that the avarage of the left numbers is a whole number
Solve the math problem 400 students are asked if they live in an apartment and have a pet: Apartment: 120 Both: 30 Pet: 90 The probability that a randomly selected student not living in an apartment has a pet is
Suppose the horses in a large stable, have a mean weight of a 807 pounds and a variance of 5776. What is the probability that the mean weight of the sample of horses with differ from the population mean by greater than 18 pounds is 41 horses are sampled at random from the stable round your answer to four decimal places.
-27=-7u 5(u-3)
You mix a powder drug with a 4.5ml of liquid to get a reconstituted solution with a concentration of 250mg/ml. The prescribers order is for 500 mg . You will give what ml of the reconstituted solution
Find all real numbers x that satisfy the equation \sqrt{x^2-2}=\sqrt{3-x}
Let A, B, C and D be sets such that | A| = |C| and |B| = |D|. Prove that |A × B| = |C × D|
The sick-leave time of employees in a firm in a month is normally with a mean of 100 hours and a standard deviation of 20 hours. Find the probability that the sick-leave time of an employee in a month exceeds 130 hours.
On+January+10+2023+the+CONSTRUCTORA+DEL+ORIENTE+SAC+company+acquires+land+to+develop+a+real estate+project%2C+which+prev%C3% A9+enable+50+lots+for+commercial+use+valued+in+S%2F+50%2C000.00+each+one%2C+the+company+has+as+a+business+model+generate+ cash+flow+through%C3%A9s+of+the+rental%2C+so+47%2C+of+the+50+enabled+lots+are+planned to lease+47%2C+and+ the+rest+will be%C3%A1n+used+by+the+company+for+management%C3%B3n+and+land+control
Let f and g be defined in R and suppose that there exists M > 0 such that |f(x) − f(p)| ≤ M|g(x) − g(p)|, for all x. Prove that if g is continuous in p, then f will also be continuous in p.
Find the zero of the linear function 8x + 24 = 0
Solve for B write your answer as a fraction or as a whole number. B-1/7=4
Calculate NPV, IRR and PAYBACK through a cash flow for a period of five years, with discount rate of: a) 10% b) 12% c) 15% initial annual cost $41,400,000
1. The cost to transport 250 packages of cement 120 kilometers is $600. What will be the cost to transport 500 packages 300 kilometers?
Convert (324)𝑓𝑖𝑣𝑒 into base-ten
Mark is gluing a ribbon around the sides of a picture frame. The frame is 11 inches long and 7 includes wide. How much ribbon does Mark need?
Let f(x)=-1/2x+5 evaluate f(-6)
A gas is leaking at 3.5ft3/min in a room of 2.9m by 6.9ft by 15.7m. How long would it take (in seconds) for 22% of the room to reach the LFL, if the gas has a LFL of 2.51%?