Question

It is claimed that the average score earned by high school graduates in the state of Virginia on the SAT test exceeds 500 points. A sample of 70 high school graduates in the state of Virginia obtained an average of 530 points. We assume the population standard deviation to be 125 points. Test at the 5% level of significance the statement made about the average points on the SAT test described in the previous case.

286

likes
1428 views

Answer to a math question It is claimed that the average score earned by high school graduates in the state of Virginia on the SAT test exceeds 500 points. A sample of 70 high school graduates in the state of Virginia obtained an average of 530 points. We assume the population standard deviation to be 125 points. Test at the 5% level of significance the statement made about the average points on the SAT test described in the previous case.

Expert avatar
Andrea
4.5
83 Answers
Para probar si el promedio de puntos obtenidos por graduados de bachillerato en el estado de Virginia en la prueba SAT excede los 500 puntos, utilizamos la prueba de hipótesis.

Dados:

- $\mu$: promedio de puntos obtenidos por graduados de bachillerato en el estado de Virginia para la prueba SAT.
- $n = 70$: tamaño de la muestra.
- $\bar{x} = 530$: promedio de puntos obtenidos en la muestra.
- $\sigma = 125$: desviación estándar poblacional.
- Nivel de significancia $\alpha = 0.05$.

Las hipótesis nula y alternativa serán:

$H_0: \mu \leq 500$

$H_1: \mu > 500$

Para calcular el estadístico de prueba, utilizamos la fórmula:

Z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}

Donde:

- $\bar{x}$ es el promedio de la muestra,
- $\mu_0 = 500$ es el promedio afirmado en la hipótesis nula,
- $\sigma$ es la desviación estándar poblacional, y
- $n$ es el tamaño de la muestra.

Sustituyendo los valores dados:

Z = \frac{530 - 500}{\frac{125}{\sqrt{70}}} \approx \frac{30}{14.978} \approx 2.003

Para un nivel de significancia del 5% y considerando que nuestra hipótesis alternativa es del tipo $>$ (una cola), buscamos el valor crítico de la distribución normal estándar (z-score) que deja un área de cola derecha de 0.05, que es aproximadamente 1.645.

Como 2.003 > 1.645, rechazamos la hipótesis nula. Por lo tanto, hay suficiente evidencia para afirmar que el promedio de puntos obtenidos por graduados de bachillerato en el estado de Virginia para la prueba SAT excede los 500 puntos.

$\boxed{\text{Respuesta: Con un nivel de significancia del 5%, se rechaza la hipótesis nula. Hay evidencia suficiente para afirmar que el promedio de puntos obtenidos excede los 500 puntos.}}$

Frequently asked questions (FAQs)
Math question: Find the limit as x approaches infinity of (3x^2 - 2)/(4x^2 + 5x -1).
+
What is the value of 2 raised to the power of 5, multiplied by the square root of 9, minus the cube root of 27?
+
What is the length of the altitude from vertex A of a triangle with sides 7, 9, and 12?
+
New questions in Mathematics
8x²-30x-10x²+70x=-30x+10x²-20x²
The patient is prescribed a course of 30 tablets. The tablets are prescribed “1 tablet twice a day”. How many days does a course of medication last?
How do you think the company has increased or decreased its income?
Consider numbers from 1 to 2023. We delete 3 consecutive numbers so, that the avarage of the left numbers is a whole number
(5u + 6)-(3u+2)=
A regional candy factory sells a guava roll at a price of $48, the monthly fixed costs amount to $125,000 and the variable cost for making a guava roll is $28. Determine: a) The equation of the total income from the production of guava rolls.
A company that manufactures personal hygiene items purchases machinery for $220,000 that is considered to last 7 years; it is estimated that at the end of the period it will have a salvage value of $1000. Find: to. The depreciation rate. b. The book value at the end of the sixth year.
A person borrows rm 1000 from a bank at an interest rate of 10%. After some time, he pays the bank rm 1900 as full and final settlement of the loan. Estimate the duration of his loan.
15/5+7-5
Raúl, Gilberto and Arturo are playing golf; The probabilities of winning for each one are as follows: (Raúl wins) = 20% (Gilberto wins) = 0.05% (Arturo wins) = ¾%. Perform operations and order events from least to most probable.
The price per night of a suite at the Baglioni Hotel in Venice is 1896 euros, VAT included. The VAT in Italy is 25%. The hotel gets a return of 10% out of the price VAT included. a) What is the amount of VAT paid by the hotel for one
Given (3x+2)E [2;14] how much money (in soles) does Sophia have if numerically it is the greatest value of x?
I. Order to add 40.25+1.31+.45 what is the first action to do ?
3/9*4/8=
Use linear approximation to estimate the value of the sine of 31o.
-1%2F2x-4%3D18
Find the minimum value of the function y = -4 x3 + 60 x2 -252 x + 8 for values of x between x = 0 and x = 9 Enter the value of the function, not the value of x
We have two distributions: A (M = 66.7, 95% CI = [60.3, 67.1]) / B (M = 71.3 95% CI = [67.7, 74.9]). Erin maintains that B is significantly larger than A. Provide your opinion on Erin’s argument and justify your opinion.
Consider the function f(x)=1/2(x+1)^2-3. Use the preceding/following interval method to estimate the instantaneous rate of change at 𝑥 = 1.
Question 3 A square has a perimeter given by the algebraic expression 24x – 16. Write the algebraic expression that represents one of its sides.