Question

Jacob, a chef who lives in the community, is really excited to launch his own cookbook. He found a local publishing house that charges him $25,500 per year in overhead (fixed costs), $14 per textbook in publishing costs, and royalties of 10% of the sales price. The company has indicated that they can print a maximum of 12,000 books per year. Jacob decided, with the publishing house, to sell the book for $25 each. a) Create a break-even graph that demonstrates fixed costs, total costs, total revenues, break-even point, and profit and loss areas. b) Determines the break-even point relative to volume and relative to revenue and calculates the break-even point as a percentage of maximum capacity. c) Calculate the new break-even point for volume and revenue if fixed costs increase by 15% per year, publishing costs increase by $6 per book and the selling price increases to $30.

202

likes
1010 views

Answer to a math question Jacob, a chef who lives in the community, is really excited to launch his own cookbook. He found a local publishing house that charges him $25,500 per year in overhead (fixed costs), $14 per textbook in publishing costs, and royalties of 10% of the sales price. The company has indicated that they can print a maximum of 12,000 books per year. Jacob decided, with the publishing house, to sell the book for $25 each. a) Create a break-even graph that demonstrates fixed costs, total costs, total revenues, break-even point, and profit and loss areas. b) Determines the break-even point relative to volume and relative to revenue and calculates the break-even point as a percentage of maximum capacity. c) Calculate the new break-even point for volume and revenue if fixed costs increase by 15% per year, publishing costs increase by $6 per book and the selling price increases to $30.

Expert avatar
Esmeralda
4.7
102 Answers
a) Pour créer le graphique de seuil de rentabilité, nous devons d'abord calculer les coûts totaux, les revenus totaux et le seuil de rentabilité.

Les coûts totaux comprennent les frais généraux annuels de 25 500 $ plus les coûts de publication de 14 $ par manuel multipliés par le nombre de livres vendus. Donc les coûts totaux sont :

Coûts totaux = Frais généraux annuels + (Coûts de publication par manuel x Nombre de livres vendus)

L'expression mathématique pour les coûts totaux est donc :

Coûts\ totaux = 25500 + (14\times Nombre\ de\ livres\ vendus)

Les revenus totaux sont calculés en multipliant le prix de vente par le nombre de livres vendus. Donc les revenus totaux sont :

Revenus totaux = Prix de vente x Nombre de livres vendus

L'expression mathématique pour les revenus totaux est donc :

Revenus\ totaux = 25 \times Nombre\ de\ livres\ vendus

Le seuil de rentabilité est le point où les revenus totaux sont égaux aux coûts totaux. Donc, on a :

Revenus totaux = Coûts totaux

Maintenant, nous pouvons tracer le graphique en utilisant ces informations.

b) Pour déterminer le seuil de rentabilité relativement au volume, nous devons résoudre l'équation :

Coûts\ totaux = Prix\ de\ vente \times Nombre\ de\ livres\ vendus

En remplaçant les variables par leurs valeurs, nous avons :

25500 + 14 \times Nombre\ de\ livres\ vendus = 25 \times Nombre\ de\ livres\ vendus

En simplifiant cette équation, nous obtenons :

25500 = 11 \times Nombre\ de\ livres\ vendus

Pour résoudre cette équation pour Nombre de livres vendus, nous divisons les deux côtés par 11 :

Nombre\ de\ livres\ vendus = \frac{25500}{11} = 2318.18

Donc, le seuil de rentabilité relativement au volume est d'environ 2319 livres.

Pour déterminer le seuil de rentabilité relativement aux revenus, nous devons utiliser la même équation et isoler Prix de vente :

Prix\ de\ vente = \frac{Coûts\ totaux}{Nombre\ de\ livres\ vendus}

En remplaçant les variables par leurs valeurs, nous avons :

Prix\ de\ vente = \frac{25500 + 14 \times Nombre\ de\ livres\ vendus}{Nombre\ de\ livres\ vendus}

Maintenant, nous pouvons substituer la valeur de Nombre de livres vendus que nous avons obtenue précédemment :

Prix\ de\ vente = \frac{25500 + 14 \times 2318.18}{2318.18} = 25

Donc, le seuil de rentabilité relativement aux revenus est de 25 $.

Pour calculer le seuil de rentabilité en pourcentage de la capacité maximale, nous divisons le seuil de rentabilité relativement au volume par la capacité maximale et multiplions par 100 :

Seuil\ de\ rentabilité\ en\ pourcentage = \frac{2319}{12000} \times 100 \approx 19.33\%

c) Si les coûts fixes augmentent de 15% par année, alors les nouveaux frais généraux annuels seront de :

Nouveaux frais généraux annuels = Frais généraux annuels + (Frais généraux annuels x Taux d'augmentation)

En utilisant les valeurs données, nous avons :

Nouveaux frais généraux annuels = 25500 + (25500 x 0.15) = 29325

Si les coûts de publication augmentent de 6 $ par livre, alors les nouveaux coûts de publication par livre seront de :

Nouveaux coûts de publication par livre = Coûts de publication par livre + Augmentation des coûts de publication par livre

En utilisant les valeurs données, nous avons :

Nouveaux coûts de publication par livre = 14 + 6 = 20

Si le prix de vente augmente à 30 $, alors le nouveau prix de vente sera de :

Nouveau prix de vente = Prix de vente + Augmentation du prix de vente

En utilisant les valeurs données, nous avons :

Nouveau prix de vente = 25 + 5 = 30

Maintenant, nous pouvons répéter les étapes précédentes pour calculer le nouveau seuil de rentabilité relativement au volume et relativement aux revenus avec ces nouvelles valeurs.

Nouveau\ seuil\ de\ rentabilité\ relativement\ au\ volume = \frac{Nouveaux\ frais\ généraux\ annuels}{Prix\ de\ vente\ -\ Nouveaux\ coûts\ de\ publication\ par\ livre} = \frac{29325}{30 - 20} = 2932.5

Nouveau\ seuil\ de\ rentabilité\ relativement\ aux\ revenus = \frac{Nouveaux\ frais\ généraux\ annuels}{Nouveau\ prix\ de\ vente} = \frac{29325}{30} = 977.5

Le nouveau seuil de rentabilité relativement au volume est d'environ 2933 livres, et le nouveau seuil de rentabilité relativement aux revenus est d'environ 977.5 $.

Frequently asked questions (FAQs)
Question: Convert the number 6.75 × 10^3 into standard decimal notation.
+
What is the derivative of cos(3x) - sin(2x) + tan(x) at x = π/6?
+
What is the range of the function f(x) = √x, where x is a non-negative number?
+
New questions in Mathematics
Let the vectors be u=(-1,0,2) , v=(0,2,-3) , w=(2,2,3) Calculate the following expressions a)<u,w> b) &lt;2u- 5v,3w&gt;
Solve: −3(−2x+23)+12=6(−4x+9)+9.
What is the coefficient of elasticity of the material that must be placed on the heel of the 10 cm high clog, with a base area of 2 cm² so that it deforms only 2 cm when the force on it will be a maximum of 600 N.
P is a polynomial defined by P(x) = 4x^3 - 11×^2 - 6x + 9. Two factors are (x - 3) and (x + 1). Rewrite the expression for P as the product of linear factors.
(2x+5)^3+(x-3)(x+3)
The beta of a company is 1,41 and its cost of equity 18,95%. What is then the market risk premium if the risk free rate is 0,94%? (in %, 2 decimal places)
"If three wolves catch three rabbits in three hours, how many wolves would it take to catch a hundred rabbits in a hundred hours?" The answer is the number of response units.
7/6-(-1/9)
Find the equation of the line perpendicular to −5𝑥−3𝑦+5=0 passing through the point (0,−2)
I want you to solve this problem as a grade sixth pupil in primary school: 8 Pigs ate 6 bags of fee in 20 days. How long will it take 10 pigs to eat 15 bags of feed eating at the same rate?
3. A rock is dropped from a height of 16 ft. It is determined that its height (in feet) above ground t seconds later (for 0≤t≤3) is given by s(t)=-2t2 + 16. Find the average velocity of the rock over [0.2,0.21] time interval.
28 is 92 percent of what?
3 A tree is planted when it is 1.2 m tall. Every year its growth is 3/8 of its previous year's height. Find how tall the tree will grow.
Let v be the set of all ordered pairs of real numbers and consider the scalar addition and multiplication operations defined by: u+v=(x,y)+(s,t)=(x+s+1,y+t -two) au=a.(x,y)=(ax+a-1,ay-2a+2) It is known that this set with the operations defined above is a vector space. A) calculate u+v is au for u=(-2,3),v=(1,-2) and a=2 B) show that (0,0) #0 Suggestion find a vector W such that u+w=u C) who is the vector -u D) show that axiom A4 holds:-u+u=0
In an orchard there are 360 trees and they are distributed in 9 rows with the same number of trees in each row. 2 are rows of orange trees, 4 of apple trees and the rest are of pear trees. What fraction of the trees in the orchard are of each type of fruit tree? How many trees of each type are there?
Total Users with an active Wise account = Total Active Users + Total Users who haven’t transacted Total Active Users = Total MCA Users + Total Send Users = Total New Users + Retained Users Total New Users = New Send Users + New MCA Users Total MCA Users = New MCA Users + Retained Users who transacted this month via MCA Total Send Users = New Send Users + Retained Users who transacted this month via Send Send CR = Total Send Users / Total Users with an active Wise account MCA CR = Total MCA Users / Total Users with an active Wise account New Send CR = New Send Users / New Profiles Created in Month New MCA CR = New MCA Users / New Profiles Created in Month We have recently witnessed a drop in MCA conversion, but send user conversion is stable, can you help explain why?
Find the vertex F(x)=x^2-10x
9n + 7(-8 + 4k) use k=2 and n=3
-Please answer to the following questions: What is the price elasticity of demand? Can you explain it in your own words? What is the price elasticity of supply? Can you explain it in your own words? What is the relationship between price elasticity and position on the demand curve? For example, as you move up the demand curve to higher prices and lower quantities, what happens to the measured elasticity? How would you explain that? B-Assume that the supply of low-skilled workers is fairly elastic, but the employers’ demand for such workers is fairly inelastic. If the policy goal is to expand employment for low-skilled workers, is it better to focus on policy tools to shift the supply of unskilled labor or on tools to shift the demand for unskilled labor? What if the policy goal is to raise wages for this group? Explain your answers with supply and demand diagrams. Make sure to properly cite and reference your academic or peer-reviewed sources (minimum 2).
The supply of a good registers periodic increases. With each increase in the offer, the total receipts of the bidders increase. Indicate the correct statement: a) demand is elastic b) demand is inelastic c) supply is inelastic d) supply has unit elasticity.