Question

Jacob, a chef who lives in the community, is really excited to launch his own cookbook. He found a local publishing house that charges him $25,500 per year in overhead (fixed costs), $14 per textbook in publishing costs, and royalties of 10% of the sales price. The company has indicated that they can print a maximum of 12,000 books per year. Jacob decided, with the publishing house, to sell the book for $25 each. a) Create a break-even graph that demonstrates fixed costs, total costs, total revenues, break-even point, and profit and loss areas. b) Determines the break-even point relative to volume and relative to revenue and calculates the break-even point as a percentage of maximum capacity. c) Calculate the new break-even point for volume and revenue if fixed costs increase by 15% per year, publishing costs increase by $6 per book and the selling price increases to $30.

202

likes
1010 views

Answer to a math question Jacob, a chef who lives in the community, is really excited to launch his own cookbook. He found a local publishing house that charges him $25,500 per year in overhead (fixed costs), $14 per textbook in publishing costs, and royalties of 10% of the sales price. The company has indicated that they can print a maximum of 12,000 books per year. Jacob decided, with the publishing house, to sell the book for $25 each. a) Create a break-even graph that demonstrates fixed costs, total costs, total revenues, break-even point, and profit and loss areas. b) Determines the break-even point relative to volume and relative to revenue and calculates the break-even point as a percentage of maximum capacity. c) Calculate the new break-even point for volume and revenue if fixed costs increase by 15% per year, publishing costs increase by $6 per book and the selling price increases to $30.

Expert avatar
Esmeralda
4.7
102 Answers
a) Pour créer le graphique de seuil de rentabilité, nous devons d'abord calculer les coûts totaux, les revenus totaux et le seuil de rentabilité.

Les coûts totaux comprennent les frais généraux annuels de 25 500 $ plus les coûts de publication de 14 $ par manuel multipliés par le nombre de livres vendus. Donc les coûts totaux sont :

Coûts totaux = Frais généraux annuels + (Coûts de publication par manuel x Nombre de livres vendus)

L'expression mathématique pour les coûts totaux est donc :

Coûts\ totaux = 25500 + (14\times Nombre\ de\ livres\ vendus)

Les revenus totaux sont calculés en multipliant le prix de vente par le nombre de livres vendus. Donc les revenus totaux sont :

Revenus totaux = Prix de vente x Nombre de livres vendus

L'expression mathématique pour les revenus totaux est donc :

Revenus\ totaux = 25 \times Nombre\ de\ livres\ vendus

Le seuil de rentabilité est le point où les revenus totaux sont égaux aux coûts totaux. Donc, on a :

Revenus totaux = Coûts totaux

Maintenant, nous pouvons tracer le graphique en utilisant ces informations.

b) Pour déterminer le seuil de rentabilité relativement au volume, nous devons résoudre l'équation :

Coûts\ totaux = Prix\ de\ vente \times Nombre\ de\ livres\ vendus

En remplaçant les variables par leurs valeurs, nous avons :

25500 + 14 \times Nombre\ de\ livres\ vendus = 25 \times Nombre\ de\ livres\ vendus

En simplifiant cette équation, nous obtenons :

25500 = 11 \times Nombre\ de\ livres\ vendus

Pour résoudre cette équation pour Nombre de livres vendus, nous divisons les deux côtés par 11 :

Nombre\ de\ livres\ vendus = \frac{25500}{11} = 2318.18

Donc, le seuil de rentabilité relativement au volume est d'environ 2319 livres.

Pour déterminer le seuil de rentabilité relativement aux revenus, nous devons utiliser la même équation et isoler Prix de vente :

Prix\ de\ vente = \frac{Coûts\ totaux}{Nombre\ de\ livres\ vendus}

En remplaçant les variables par leurs valeurs, nous avons :

Prix\ de\ vente = \frac{25500 + 14 \times Nombre\ de\ livres\ vendus}{Nombre\ de\ livres\ vendus}

Maintenant, nous pouvons substituer la valeur de Nombre de livres vendus que nous avons obtenue précédemment :

Prix\ de\ vente = \frac{25500 + 14 \times 2318.18}{2318.18} = 25

Donc, le seuil de rentabilité relativement aux revenus est de 25 $.

Pour calculer le seuil de rentabilité en pourcentage de la capacité maximale, nous divisons le seuil de rentabilité relativement au volume par la capacité maximale et multiplions par 100 :

Seuil\ de\ rentabilité\ en\ pourcentage = \frac{2319}{12000} \times 100 \approx 19.33\%

c) Si les coûts fixes augmentent de 15% par année, alors les nouveaux frais généraux annuels seront de :

Nouveaux frais généraux annuels = Frais généraux annuels + (Frais généraux annuels x Taux d'augmentation)

En utilisant les valeurs données, nous avons :

Nouveaux frais généraux annuels = 25500 + (25500 x 0.15) = 29325

Si les coûts de publication augmentent de 6 $ par livre, alors les nouveaux coûts de publication par livre seront de :

Nouveaux coûts de publication par livre = Coûts de publication par livre + Augmentation des coûts de publication par livre

En utilisant les valeurs données, nous avons :

Nouveaux coûts de publication par livre = 14 + 6 = 20

Si le prix de vente augmente à 30 $, alors le nouveau prix de vente sera de :

Nouveau prix de vente = Prix de vente + Augmentation du prix de vente

En utilisant les valeurs données, nous avons :

Nouveau prix de vente = 25 + 5 = 30

Maintenant, nous pouvons répéter les étapes précédentes pour calculer le nouveau seuil de rentabilité relativement au volume et relativement aux revenus avec ces nouvelles valeurs.

Nouveau\ seuil\ de\ rentabilité\ relativement\ au\ volume = \frac{Nouveaux\ frais\ généraux\ annuels}{Prix\ de\ vente\ -\ Nouveaux\ coûts\ de\ publication\ par\ livre} = \frac{29325}{30 - 20} = 2932.5

Nouveau\ seuil\ de\ rentabilité\ relativement\ aux\ revenus = \frac{Nouveaux\ frais\ généraux\ annuels}{Nouveau\ prix\ de\ vente} = \frac{29325}{30} = 977.5

Le nouveau seuil de rentabilité relativement au volume est d'environ 2933 livres, et le nouveau seuil de rentabilité relativement aux revenus est d'environ 977.5 $.

Frequently asked questions (FAQs)
What is the dimension of a basis obtained from a set of three vectors in R^4?
+
Math Question: Graph the inequality y > 3x + 2.
+
Math question: What is the maximum value of the quadratic function f(x) = -2x^2 + 5x + 3 within the domain [0, 10]?
+
New questions in Mathematics
Two fire lookouts are 12.5 km apart on a north-south line. The northern fire lookout sights a fire 20° south of East at the same time as the southern fire lookout spots it at 60° East of North. How far is the fire from the Southern lookout? Round your answer to the nearest tenth of a kilometer
5 squirrels were found to have an average weight of 9.3 ounces with a sample standard deviation is 1.1. Find the 95% confidence interval of the true mean weight
The graph of the equation x²= 4py is a parabola with focus F(_,_) and directrix y=_____ Therefore, the graph of x²=12y is a parabola with focus F(_,_) and a directrix y=_____
The mean life of a television set is 119 months with a standard deviation of 13 months. If a sample of 67 televisions is randomly selected, what is the probability that the sample mean would be less than 121 months? Round your answer to four decimal places
Mrs. Emily saved RM10000 in a bank. At the end of the eighth year, the amount of money accumulated amounted to RM19992.71. If the bank pays an annual interest of x% for a year compounded every 6 months. Calculate the value of x.
Prove that it is not possible to arrange the integers 1 to 240 in a table with 15 rows and 16 columns in such a way that the sum of the numbers in each of the columns is the same.
A mutual fund manager has a $350 million portfolio with a beta of 1.10. The risk-free rate is 3.5%, and the market risk premium is 6.00%. The manager expects to receive an additional $150 million which she plans to invest in several different stocks. After investing the additional funds, she wants to reduce the portfolio’s risk level so that once the additional funds are invested the portfolio’s required return will be 9.20%. What must the average beta of the new stocks added to the portfolio be (not the new portfolio’s beta) to achieve the desired required rate of return?
It is known that the content of milk that is actually in a bag distributes normally with an average of 900 grams and variance 25 square grams. Suppose that the cost in pesos of a bag of milk is given by 𝐶(𝑥) = { 3800 𝑠𝑖 𝑥 ≤ 890 4500 𝑠𝑖 𝑥 > 890 Find the expected cost.
Convert 5/9 to a decimal
DuocUC 2) The cost C, in pesos, for the production of x meters of a certain fabric can be calculated through the function: (x+185) C(x)=81300-6x+ 20000 a) It is known that C(90) 5.344. Interpret this result. (2 points) b) Calculate C'(x) (2 points) 3 x²+111x-0.87 20000 2000 c) Function C calculates the cost while producing a maximum of 500 meters of fabric. Determine the values of x at which the cost of production is increasing and the values of x at which the cost is decreasing. (3 points) d) If a maximum of 500 meters of fabric are produced, what is the minimum production cost? (
A,B,C and D are the corners of a rectangular building. Find the lengths the diagonals if AB measures 38' - 9" and AD measures 56' - 3"
To get to a hotel on the hill you have to travel 6 km of uphill road and every kilometer there are 6 sharp curves. Each of the sharp curves is marked by three traffic signs. How many traffic signs are there on the stretch of road that leads to the arbergi?
Given two lines 𝐿1: 𝑥 + 4𝑦 = −10 and 𝐿2: 2𝑥 − 𝑦 = 7. i. Find the intersection point of 𝐿1 and 𝐿2.
22. Let [AB] be a chord in a circle C, and k a circle which is internally tangent to the circle C at a point P and to the chord [AB] at a point Q. Show that the line P Q passes through the midpoint of the arc AB opposite to the arc APB.
The average weekly earnings in the leisure and hospitality industry group for a re‐ cent year was $273. A random sample of 40 workers showed weekly average ear‐ nings of $285 with the population standard deviation equal to 58. At the 0.05 level of significance can it be concluded that the mean differs from $273? Find a 95% con‐ fidence interval for the weekly earnings and show that it supports the results of the hypothesis test.
A 20-year old hopes to retire by age 65. To help with future expenses, they invest $6 500 today at an interest rate of 6.4% compounded annually. At age 65, what is the difference between the exact accumulated value and the approximate accumulated value (using the Rule of 72)?
How much does 7.2 moles of ammonium dichromate weigh? (NH4)2Cr2O7
-6 - t / 4 = -1
4m - 3t + 7 = 16
Let f(x)=-1/2x+5 evaluate f(-6)