Question

Jacob, a chef who lives in the community, is really excited to launch his own cookbook. He found a local publishing house that charges him $25,500 per year in overhead (fixed costs), $14 per textbook in publishing costs, and royalties of 10% of the sales price. The company has indicated that they can print a maximum of 12,000 books per year. Jacob decided, with the publishing house, to sell the book for $25 each. a) Create a break-even graph that demonstrates fixed costs, total costs, total revenues, break-even point, and profit and loss areas. b) Determines the break-even point relative to volume and relative to revenue and calculates the break-even point as a percentage of maximum capacity. c) Calculate the new break-even point for volume and revenue if fixed costs increase by 15% per year, publishing costs increase by $6 per book and the selling price increases to $30.

202

likes
1010 views

Answer to a math question Jacob, a chef who lives in the community, is really excited to launch his own cookbook. He found a local publishing house that charges him $25,500 per year in overhead (fixed costs), $14 per textbook in publishing costs, and royalties of 10% of the sales price. The company has indicated that they can print a maximum of 12,000 books per year. Jacob decided, with the publishing house, to sell the book for $25 each. a) Create a break-even graph that demonstrates fixed costs, total costs, total revenues, break-even point, and profit and loss areas. b) Determines the break-even point relative to volume and relative to revenue and calculates the break-even point as a percentage of maximum capacity. c) Calculate the new break-even point for volume and revenue if fixed costs increase by 15% per year, publishing costs increase by $6 per book and the selling price increases to $30.

Expert avatar
Esmeralda
4.7
102 Answers
a) Pour créer le graphique de seuil de rentabilité, nous devons d'abord calculer les coûts totaux, les revenus totaux et le seuil de rentabilité.

Les coûts totaux comprennent les frais généraux annuels de 25 500 $ plus les coûts de publication de 14 $ par manuel multipliés par le nombre de livres vendus. Donc les coûts totaux sont :

Coûts totaux = Frais généraux annuels + (Coûts de publication par manuel x Nombre de livres vendus)

L'expression mathématique pour les coûts totaux est donc :

Coûts\ totaux = 25500 + (14\times Nombre\ de\ livres\ vendus)

Les revenus totaux sont calculés en multipliant le prix de vente par le nombre de livres vendus. Donc les revenus totaux sont :

Revenus totaux = Prix de vente x Nombre de livres vendus

L'expression mathématique pour les revenus totaux est donc :

Revenus\ totaux = 25 \times Nombre\ de\ livres\ vendus

Le seuil de rentabilité est le point où les revenus totaux sont égaux aux coûts totaux. Donc, on a :

Revenus totaux = Coûts totaux

Maintenant, nous pouvons tracer le graphique en utilisant ces informations.

b) Pour déterminer le seuil de rentabilité relativement au volume, nous devons résoudre l'équation :

Coûts\ totaux = Prix\ de\ vente \times Nombre\ de\ livres\ vendus

En remplaçant les variables par leurs valeurs, nous avons :

25500 + 14 \times Nombre\ de\ livres\ vendus = 25 \times Nombre\ de\ livres\ vendus

En simplifiant cette équation, nous obtenons :

25500 = 11 \times Nombre\ de\ livres\ vendus

Pour résoudre cette équation pour Nombre de livres vendus, nous divisons les deux côtés par 11 :

Nombre\ de\ livres\ vendus = \frac{25500}{11} = 2318.18

Donc, le seuil de rentabilité relativement au volume est d'environ 2319 livres.

Pour déterminer le seuil de rentabilité relativement aux revenus, nous devons utiliser la même équation et isoler Prix de vente :

Prix\ de\ vente = \frac{Coûts\ totaux}{Nombre\ de\ livres\ vendus}

En remplaçant les variables par leurs valeurs, nous avons :

Prix\ de\ vente = \frac{25500 + 14 \times Nombre\ de\ livres\ vendus}{Nombre\ de\ livres\ vendus}

Maintenant, nous pouvons substituer la valeur de Nombre de livres vendus que nous avons obtenue précédemment :

Prix\ de\ vente = \frac{25500 + 14 \times 2318.18}{2318.18} = 25

Donc, le seuil de rentabilité relativement aux revenus est de 25 $.

Pour calculer le seuil de rentabilité en pourcentage de la capacité maximale, nous divisons le seuil de rentabilité relativement au volume par la capacité maximale et multiplions par 100 :

Seuil\ de\ rentabilité\ en\ pourcentage = \frac{2319}{12000} \times 100 \approx 19.33\%

c) Si les coûts fixes augmentent de 15% par année, alors les nouveaux frais généraux annuels seront de :

Nouveaux frais généraux annuels = Frais généraux annuels + (Frais généraux annuels x Taux d'augmentation)

En utilisant les valeurs données, nous avons :

Nouveaux frais généraux annuels = 25500 + (25500 x 0.15) = 29325

Si les coûts de publication augmentent de 6 $ par livre, alors les nouveaux coûts de publication par livre seront de :

Nouveaux coûts de publication par livre = Coûts de publication par livre + Augmentation des coûts de publication par livre

En utilisant les valeurs données, nous avons :

Nouveaux coûts de publication par livre = 14 + 6 = 20

Si le prix de vente augmente à 30 $, alors le nouveau prix de vente sera de :

Nouveau prix de vente = Prix de vente + Augmentation du prix de vente

En utilisant les valeurs données, nous avons :

Nouveau prix de vente = 25 + 5 = 30

Maintenant, nous pouvons répéter les étapes précédentes pour calculer le nouveau seuil de rentabilité relativement au volume et relativement aux revenus avec ces nouvelles valeurs.

Nouveau\ seuil\ de\ rentabilité\ relativement\ au\ volume = \frac{Nouveaux\ frais\ généraux\ annuels}{Prix\ de\ vente\ -\ Nouveaux\ coûts\ de\ publication\ par\ livre} = \frac{29325}{30 - 20} = 2932.5

Nouveau\ seuil\ de\ rentabilité\ relativement\ aux\ revenus = \frac{Nouveaux\ frais\ généraux\ annuels}{Nouveau\ prix\ de\ vente} = \frac{29325}{30} = 977.5

Le nouveau seuil de rentabilité relativement au volume est d'environ 2933 livres, et le nouveau seuil de rentabilité relativement aux revenus est d'environ 977.5 $.

Frequently asked questions (FAQs)
What is the angle (in degrees) when sin(x) = 0.5?
+
Question: Solve the equation 3x^2 + 14x + 8 = 0 using factoring and the distributive property.
+
Question: Find the length of a perpendicular distance from a vertex to the angle bisector of an opposite angle in a triangle. (
+
New questions in Mathematics
Write 32/25 as a percent
Imagine that you are in an electronics store and you want to calculate the final price of a product after applying a discount. The product you are interested in has an original price of $1000 MN, but, for today, the store offers a 25% discount on all its products. Develop an algorithm that allows you to calculate the final price you will pay, but first point out the elements.
STUDENTS IN A CLASS LEARN ONLY ONE FOREIGN LANGUAGE. two-sevenths of the students learn German, half of the students learn Spanish, and the remaining six students learn Italian. what is the number of students in this class? detail your reasoning carefully.
Find the measures of the sides of ∆KPL and classify each triangle by its sides k (-2,-6), p (-4,0), l (3,-1)
Supposed 60% of the register voters in a country or democrat. If a sample of 793 voters is selected, what is the probability that the sample proportion of Democrats will be greater than 64% round your answer to four decimal places
According to a survey in a country 27% of adults do not own a credit card suppose a simple random sample of 800 adults is obtained . Describe the sampling distribution of P hat , the sample proportion of adults who do not own a credit card
A merchant can sell 20 electric shavers a day at a price of 25 each, but he can sell 30 if he sets a price of 20 for each electric shaver. Determine the demand equation, assuming it is linear. Consider (P= price, X= quantity demanded)
A test has 5 multiple choice questions. Each question has 4 alternatives, only one of which is correct. A student who did not study for the test randomly chooses one alternative for each question.(a) What is the probability of him getting a zero on the test?(b) What is the probability of him getting a three or more? The maximum mark for the test is 5, with each question worth one point.
A triangular window has a base of 6 ft. and a height of 7 ft. What is its area?
89, ÷ 10
7=-4/3y -1
Subjects are randomly assigned to one of three specialties for a 3-month rotation, and at the end of that rotation, they are given a test that measures moral development. The scores are listed below, where a high score represents high moral development and a low score represents low moral development. Orthopedics Pediatrics Oncology 77 63 54 84 93 97 66 97 76 44 76 65 59 45 91 40 88 68 28 74 54 M = 56.86 M = 76.57 M = 72.14 What is Nt?
Show work on 4108 divided by 4
A cell phone company offers two calling plans. Plan A: $20 per month plus 5 cents for each minute, or Plan B: $30 per month plus 3 cents for each minute. [2] Write an equation to describe the monthly cost (a) C (in $) in terms of the time m (in minutes) of phone calls when Plan A is applied.
A tree cast a shadow of 26 meters when the angle of evaluation of the sum is 24°. Find the height of the tree to the nearest meter
Given two lines 𝐿1: 𝑥 + 4𝑦 = −10 and 𝐿2: 2𝑥 − 𝑦 = 7. i. Find the intersection point of 𝐿1 and 𝐿2.
-6 - t / 4 = -1
Consider a sample space S, and two events A and B such that P(A ∩ B) = 0.2, P(A ∪ B) = 0.6, P(B ∪ ̄A) = 0.8 (a) [0.5 points] Calculate P (A). (b) [0.5 points] Calculation P (B)
Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.
Solve the system of equations by the addition method. 0.01x-0.08y=-0.1 0.2x+0.6y=0.2