Question

Jacob, a chef who lives in the community, is really excited to launch his own cookbook. He found a local publishing house that charges him $25,500 per year in overhead (fixed costs), $14 per textbook in publishing costs, and royalties of 10% of the sales price. The company has indicated that they can print a maximum of 12,000 books per year. Jacob decided, with the publishing house, to sell the book for $25 each. a) Create a break-even graph that demonstrates fixed costs, total costs, total revenues, break-even point, and profit and loss areas. b) Determines the break-even point relative to volume and relative to revenue and calculates the break-even point as a percentage of maximum capacity. c) Calculate the new break-even point for volume and revenue if fixed costs increase by 15% per year, publishing costs increase by $6 per book and the selling price increases to $30.

202

likes
1010 views

Answer to a math question Jacob, a chef who lives in the community, is really excited to launch his own cookbook. He found a local publishing house that charges him $25,500 per year in overhead (fixed costs), $14 per textbook in publishing costs, and royalties of 10% of the sales price. The company has indicated that they can print a maximum of 12,000 books per year. Jacob decided, with the publishing house, to sell the book for $25 each. a) Create a break-even graph that demonstrates fixed costs, total costs, total revenues, break-even point, and profit and loss areas. b) Determines the break-even point relative to volume and relative to revenue and calculates the break-even point as a percentage of maximum capacity. c) Calculate the new break-even point for volume and revenue if fixed costs increase by 15% per year, publishing costs increase by $6 per book and the selling price increases to $30.

Expert avatar
Esmeralda
4.7
101 Answers
a) Pour créer le graphique de seuil de rentabilité, nous devons d'abord calculer les coûts totaux, les revenus totaux et le seuil de rentabilité.

Les coûts totaux comprennent les frais généraux annuels de 25 500 $ plus les coûts de publication de 14 $ par manuel multipliés par le nombre de livres vendus. Donc les coûts totaux sont :

Coûts totaux = Frais généraux annuels + (Coûts de publication par manuel x Nombre de livres vendus)

L'expression mathématique pour les coûts totaux est donc :

Coûts\ totaux = 25500 + (14\times Nombre\ de\ livres\ vendus)

Les revenus totaux sont calculés en multipliant le prix de vente par le nombre de livres vendus. Donc les revenus totaux sont :

Revenus totaux = Prix de vente x Nombre de livres vendus

L'expression mathématique pour les revenus totaux est donc :

Revenus\ totaux = 25 \times Nombre\ de\ livres\ vendus

Le seuil de rentabilité est le point où les revenus totaux sont égaux aux coûts totaux. Donc, on a :

Revenus totaux = Coûts totaux

Maintenant, nous pouvons tracer le graphique en utilisant ces informations.

b) Pour déterminer le seuil de rentabilité relativement au volume, nous devons résoudre l'équation :

Coûts\ totaux = Prix\ de\ vente \times Nombre\ de\ livres\ vendus

En remplaçant les variables par leurs valeurs, nous avons :

25500 + 14 \times Nombre\ de\ livres\ vendus = 25 \times Nombre\ de\ livres\ vendus

En simplifiant cette équation, nous obtenons :

25500 = 11 \times Nombre\ de\ livres\ vendus

Pour résoudre cette équation pour Nombre de livres vendus, nous divisons les deux côtés par 11 :

Nombre\ de\ livres\ vendus = \frac{25500}{11} = 2318.18

Donc, le seuil de rentabilité relativement au volume est d'environ 2319 livres.

Pour déterminer le seuil de rentabilité relativement aux revenus, nous devons utiliser la même équation et isoler Prix de vente :

Prix\ de\ vente = \frac{Coûts\ totaux}{Nombre\ de\ livres\ vendus}

En remplaçant les variables par leurs valeurs, nous avons :

Prix\ de\ vente = \frac{25500 + 14 \times Nombre\ de\ livres\ vendus}{Nombre\ de\ livres\ vendus}

Maintenant, nous pouvons substituer la valeur de Nombre de livres vendus que nous avons obtenue précédemment :

Prix\ de\ vente = \frac{25500 + 14 \times 2318.18}{2318.18} = 25

Donc, le seuil de rentabilité relativement aux revenus est de 25 $.

Pour calculer le seuil de rentabilité en pourcentage de la capacité maximale, nous divisons le seuil de rentabilité relativement au volume par la capacité maximale et multiplions par 100 :

Seuil\ de\ rentabilité\ en\ pourcentage = \frac{2319}{12000} \times 100 \approx 19.33\%

c) Si les coûts fixes augmentent de 15% par année, alors les nouveaux frais généraux annuels seront de :

Nouveaux frais généraux annuels = Frais généraux annuels + (Frais généraux annuels x Taux d'augmentation)

En utilisant les valeurs données, nous avons :

Nouveaux frais généraux annuels = 25500 + (25500 x 0.15) = 29325

Si les coûts de publication augmentent de 6 $ par livre, alors les nouveaux coûts de publication par livre seront de :

Nouveaux coûts de publication par livre = Coûts de publication par livre + Augmentation des coûts de publication par livre

En utilisant les valeurs données, nous avons :

Nouveaux coûts de publication par livre = 14 + 6 = 20

Si le prix de vente augmente à 30 $, alors le nouveau prix de vente sera de :

Nouveau prix de vente = Prix de vente + Augmentation du prix de vente

En utilisant les valeurs données, nous avons :

Nouveau prix de vente = 25 + 5 = 30

Maintenant, nous pouvons répéter les étapes précédentes pour calculer le nouveau seuil de rentabilité relativement au volume et relativement aux revenus avec ces nouvelles valeurs.

Nouveau\ seuil\ de\ rentabilité\ relativement\ au\ volume = \frac{Nouveaux\ frais\ généraux\ annuels}{Prix\ de\ vente\ -\ Nouveaux\ coûts\ de\ publication\ par\ livre} = \frac{29325}{30 - 20} = 2932.5

Nouveau\ seuil\ de\ rentabilité\ relativement\ aux\ revenus = \frac{Nouveaux\ frais\ généraux\ annuels}{Nouveau\ prix\ de\ vente} = \frac{29325}{30} = 977.5

Le nouveau seuil de rentabilité relativement au volume est d'environ 2933 livres, et le nouveau seuil de rentabilité relativement aux revenus est d'environ 977.5 $.

Frequently asked questions (FAQs)
Math question: What is the integral of f(x) = 3x^2 - 5x + 2 with respect to x?
+
Math question: What is the slope of the graph of a constant function f(x)=c?
+
Math question: Find the absolute extrema of the function f(x) = x^2 + 3x - 2 on the interval [-5, 5].
+
New questions in Mathematics
calculate the derivative by the limit definition: f(x) = 6x^3 + 2
CASE 6-1: PREPARE A PRODUCTION PLAN: WHAT PROBLEMS ARRIVE? Midwest Plastics Company has conducted profit planning for several years. The president stated (with justification) that inventory control and planning had not been satisfactory, which was mainly due to poor planning of production and inventory budgets. Please analyze and provide recommendations, in detail, on the issue regarding the 20B profit plan, which is now being prepared. Their analysis and recommendations will be presented to the executive committee. Despite the seasonality factor, the sales department has been successful in developing a sales plan, on a monthly basis, for each year. The following sales data is available for 20B. 1. Sales plan summary for 20B: 2. Finished goods inventory, as of January 1, 20B, is 96,000 units. 3. Work-in-process inventory will remain constant. 4. Actual annual sales in 20A, including the estimate for December, were 350,000 units. 5. The average finished goods inventory during 20A was 70,000 units. IT IS REQUESTED. 1. Prepare the annual production budget, assuming that management policy is to budget ending finished goods inventory at a standard quantity, based on the ratio of historical sales of 20A to inventory turnover. 2. Prepare a schedule showing sales, production, and inventory levels for each month, assuming: 1) stable inventory, 2) stable production, and 3) recommended inventory-production levels. In developing your recommendations, assume that the following policies have been established: a) The president has set the policy that a maximum inventory of 85,000 units and a minimum inventory of 75,000 units should be used, except in abnormal circumstances. b) A stable level of production is definitely preferred, except that during the holiday season in July and August, production may be reduced by 25 percent. Likewise, a variation in production of 7.5 percent above and below the average level is acceptable. 3. What are the main problems faced by the company in production planning? Make your general recommendations.
8x-(5-x)
calculate the following vector based on its base vectors a= -18i,26j
1/2x +3 <4x-7
2x-y=5 x-y=4
X^2 = 25
3x+5y=11 2x-3y=1
If f(x) = 3x 2, what is the value of x so that f(x) = 11?
4X^2 25
Margin of error E=0.30 populations standard deviation =2.5. Population means with 95% confidence. What I the required sample size (round up to the whole number)
Substitute a=2 and b=-3 and c=-4 to evaluate 2ac/(-2b^2-a)
A person decides to invest money in fixed income securities to redeem it at the end of 3 years. In this way, you make monthly deposits of R$300.00 in the 1st year, R$400.00 in the 2nd year and R$500.00 in the 3rd year. Calculate the amount, knowing that compound interest is 0.6% per month for the entire period. The answer is 15,828.60
Calculate the change in internal energy of a gas that receives 16000 J of heat at constant pressure (1.3 atm) expanding from 0.100 m3 to 0.200 m3. Question 1Answer to. 7050J b. 2125J c. None of the above d. 2828J and. 10295 J
A property sold for $745,000 in a co-brokered transaction. The seller has agreed to pay a 7% commission to the listing firm. The listing firm has agreed to equally split the commission with the selling firm. If the buyer’s broker will receive 8% of the selling firm’s commission, how much commission will the buyer’s broker receive? $14,900 $3725 $$37250 $18625
Let G be the center of gravity of triangle ABC. We draw through A a parallel to BC on which we take a point D so that DG⊥BG. If the area of the quadrilateral AGBD is equal to s, show that AC·BD≥2·s.
Find I (Intrest) using simple interest formula of 17700 @ 15% for 4 years
Identify the slope and y intercept y=11+2/3x
Emile organizes a community dance to raise funds. In addition to paying $300 to rent the room, she must rent chairs at $2 each. The quantity of chairs rented will be equal to the number of tickets sold. She sells tickets for $7 each. How much should she sell to raise money?
I have a complex function I would like to integrate over. I can use two approaches and they should give the same solution. If I want to find the contour integral ∫𝛾𝑧¯𝑑𝑧 for where 𝛾 is the circle |𝑧−𝑖|=3 oriented counterclockwise I get the following: ∫2𝜋0𝑖+3𝑒𝑖𝑡⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯𝑑(𝑖+3𝑒𝑖𝑡)=∫2𝜋03𝑖(−𝑖+3𝑒−𝑖𝑡)𝑒𝑖𝑡𝑑𝑡=18𝜋𝑖 If I directly apply the Residue Theorem, I would get ∫𝛾𝑧¯𝑑𝑧=2𝜋𝑖Res(𝑓,𝑧=0)=2𝜋𝑖