Question

Jacob, a chef who lives in the community, is really excited to launch his own cookbook. He found a local publishing house that charges him $25,500 per year in overhead (fixed costs), $14 per textbook in publishing costs, and royalties of 10% of the sales price. The company has indicated that they can print a maximum of 12,000 books per year. Jacob decided, with the publishing house, to sell the book for $25 each. a) Create a break-even graph that demonstrates fixed costs, total costs, total revenues, break-even point, and profit and loss areas. b) Determines the break-even point relative to volume and relative to revenue and calculates the break-even point as a percentage of maximum capacity. c) Calculate the new break-even point for volume and revenue if fixed costs increase by 15% per year, publishing costs increase by $6 per book and the selling price increases to $30.

202

likes
1010 views

Answer to a math question Jacob, a chef who lives in the community, is really excited to launch his own cookbook. He found a local publishing house that charges him $25,500 per year in overhead (fixed costs), $14 per textbook in publishing costs, and royalties of 10% of the sales price. The company has indicated that they can print a maximum of 12,000 books per year. Jacob decided, with the publishing house, to sell the book for $25 each. a) Create a break-even graph that demonstrates fixed costs, total costs, total revenues, break-even point, and profit and loss areas. b) Determines the break-even point relative to volume and relative to revenue and calculates the break-even point as a percentage of maximum capacity. c) Calculate the new break-even point for volume and revenue if fixed costs increase by 15% per year, publishing costs increase by $6 per book and the selling price increases to $30.

Expert avatar
Esmeralda
4.7
102 Answers
a) Pour créer le graphique de seuil de rentabilité, nous devons d'abord calculer les coûts totaux, les revenus totaux et le seuil de rentabilité.

Les coûts totaux comprennent les frais généraux annuels de 25 500 $ plus les coûts de publication de 14 $ par manuel multipliés par le nombre de livres vendus. Donc les coûts totaux sont :

Coûts totaux = Frais généraux annuels + (Coûts de publication par manuel x Nombre de livres vendus)

L'expression mathématique pour les coûts totaux est donc :

Coûts\ totaux = 25500 + (14\times Nombre\ de\ livres\ vendus)

Les revenus totaux sont calculés en multipliant le prix de vente par le nombre de livres vendus. Donc les revenus totaux sont :

Revenus totaux = Prix de vente x Nombre de livres vendus

L'expression mathématique pour les revenus totaux est donc :

Revenus\ totaux = 25 \times Nombre\ de\ livres\ vendus

Le seuil de rentabilité est le point où les revenus totaux sont égaux aux coûts totaux. Donc, on a :

Revenus totaux = Coûts totaux

Maintenant, nous pouvons tracer le graphique en utilisant ces informations.

b) Pour déterminer le seuil de rentabilité relativement au volume, nous devons résoudre l'équation :

Coûts\ totaux = Prix\ de\ vente \times Nombre\ de\ livres\ vendus

En remplaçant les variables par leurs valeurs, nous avons :

25500 + 14 \times Nombre\ de\ livres\ vendus = 25 \times Nombre\ de\ livres\ vendus

En simplifiant cette équation, nous obtenons :

25500 = 11 \times Nombre\ de\ livres\ vendus

Pour résoudre cette équation pour Nombre de livres vendus, nous divisons les deux côtés par 11 :

Nombre\ de\ livres\ vendus = \frac{25500}{11} = 2318.18

Donc, le seuil de rentabilité relativement au volume est d'environ 2319 livres.

Pour déterminer le seuil de rentabilité relativement aux revenus, nous devons utiliser la même équation et isoler Prix de vente :

Prix\ de\ vente = \frac{Coûts\ totaux}{Nombre\ de\ livres\ vendus}

En remplaçant les variables par leurs valeurs, nous avons :

Prix\ de\ vente = \frac{25500 + 14 \times Nombre\ de\ livres\ vendus}{Nombre\ de\ livres\ vendus}

Maintenant, nous pouvons substituer la valeur de Nombre de livres vendus que nous avons obtenue précédemment :

Prix\ de\ vente = \frac{25500 + 14 \times 2318.18}{2318.18} = 25

Donc, le seuil de rentabilité relativement aux revenus est de 25 $.

Pour calculer le seuil de rentabilité en pourcentage de la capacité maximale, nous divisons le seuil de rentabilité relativement au volume par la capacité maximale et multiplions par 100 :

Seuil\ de\ rentabilité\ en\ pourcentage = \frac{2319}{12000} \times 100 \approx 19.33\%

c) Si les coûts fixes augmentent de 15% par année, alors les nouveaux frais généraux annuels seront de :

Nouveaux frais généraux annuels = Frais généraux annuels + (Frais généraux annuels x Taux d'augmentation)

En utilisant les valeurs données, nous avons :

Nouveaux frais généraux annuels = 25500 + (25500 x 0.15) = 29325

Si les coûts de publication augmentent de 6 $ par livre, alors les nouveaux coûts de publication par livre seront de :

Nouveaux coûts de publication par livre = Coûts de publication par livre + Augmentation des coûts de publication par livre

En utilisant les valeurs données, nous avons :

Nouveaux coûts de publication par livre = 14 + 6 = 20

Si le prix de vente augmente à 30 $, alors le nouveau prix de vente sera de :

Nouveau prix de vente = Prix de vente + Augmentation du prix de vente

En utilisant les valeurs données, nous avons :

Nouveau prix de vente = 25 + 5 = 30

Maintenant, nous pouvons répéter les étapes précédentes pour calculer le nouveau seuil de rentabilité relativement au volume et relativement aux revenus avec ces nouvelles valeurs.

Nouveau\ seuil\ de\ rentabilité\ relativement\ au\ volume = \frac{Nouveaux\ frais\ généraux\ annuels}{Prix\ de\ vente\ -\ Nouveaux\ coûts\ de\ publication\ par\ livre} = \frac{29325}{30 - 20} = 2932.5

Nouveau\ seuil\ de\ rentabilité\ relativement\ aux\ revenus = \frac{Nouveaux\ frais\ généraux\ annuels}{Nouveau\ prix\ de\ vente} = \frac{29325}{30} = 977.5

Le nouveau seuil de rentabilité relativement au volume est d'environ 2933 livres, et le nouveau seuil de rentabilité relativement aux revenus est d'environ 977.5 $.

Frequently asked questions (FAQs)
Question: What is the domain of the trigonometric function f(x) = sin(x) + 2cos(x) within the range [0, 2π]? (
+
What is the derivative of cos(3x) - 2sin(2x) with respect to x?
+
What is the domain of the trigonometric function f(x) = cos(x) + 3sin(x) in radians?
+
New questions in Mathematics
8x-(5-x)
-11+29-18
The actual length of an object is 1.3 m . If the blueprint uses a scale of 1 : 12 , what is the length of the line on the drawing?
Divide 22 by 5 solve it by array and an area model
You are planning to buy a car worth $20,000. Which of the two deals described below would you choose, both with a 48-month term? (NB: estimate the monthly payment of each offer). i) the dealer offers to take 10% off the price, then lend you the balance at an annual percentage rate (APR) of 9%, monthly compounding. ii) the dealer offers to lend you $20,000 (i.e., no discount) at an APR of 3%, monthly compounding.
A National Solidarity Bond offers A 5 year bond offering a gross return of 15% Calculate the AER for this investment. (Give your answer to two decimal places, no need for the percent or € sign in your answer)
41/39 - 1/38
2x+4x=
The market for economics textbooks is represented by the following supply and demand equations: P = 5 + 2Qs P = 20 - Qd Where P is the price in £s and Qs and Qd are the quantities supplied and demanded in thousands. What is the equilibrium price?
ind the z-score for which 72% of the distribution's area lies between -z and z. -1.7417, 1.7417 -1.1538, 1.1538 -1.0803, 1.0803 -2.826, 2.826
(X+2)(x+3)=4x+18
Let X be a discrete random variable such that E(X)=3 and V(X)=5. Let 𝑌 = 2𝑋^2 − 3𝑋. Determine E(Y).
48 kg of 30% sulfuric acid in a mixture of 10% and 40% sulfuric acid arose. How many kilograms were each of the original solutions?
Translate to an equation and solve. Let x be the unknown number: What number is 52% of 81.
A buyer purchased a North Carolina home for $475,250. The seller allowed the buyer to assume his first small mortgage with a loan balance of $110,000. How much is the excise tax paid in the transaction? $951 $729.50 $950.50 $221 none of the above
Read the “Local Communities as Stakeholders: Does Amazon Really Need Tax Breaks?” example on p. 83 in Ch. 3 of Management: A Practical Introduction. In your response, discuss whether you feel that tax breaks for big companies benefit local communities. Describe ways to attract business to a region without having a negative impact on the larger community.
If the mean of the following numbers is 17, find the c value. Produce an algebraic solution. Guess and check is unacceptable. 12, 18, 21, c, 13
Determine the general solution of the equation y′+y=e−x .
Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0 .5t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds. DM 2: study of a function Exercise The temperature T in degrees Celsius of a chemical reaction is given as a function of time t, expressed in minutes, by the function defined on ¿ by: T (t )=(20 t +10)e−0.5t. 1) What is the initial temperature? 2) Show that T' (t )=(−10 t +15)e−0.5 t. 3) Study the sign of T' (t ), then draw up the table of variations of T . We do not ask for the limit of T in +∞. 4) What is the maximum temperature reached by the reaction chemical. We will give an approximate value to within 10−2. 5) After how long does the temperature T go back down to its initial value? We will give an approximate value of this time in minutes and seconds.
The car with an irresponsible driver starts to brake when it goes through a red light. When passing the traffic light, he does so at a speed of 115 kph in the right lane. Further ahead, 70 meters from the traffic light, a child is crossing the street and falls. If the effect of the car's brakes is equivalent to a deceleration of magnitude 5.7m/s². Is the child hit by the car or not? How far from the traffic light does the car stop?