1. Expand both squares in the numerator:
(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
(a+b-c)^2 = a^2 + b^2 + c^2 + 2ab - 2bc - 2ca
2. Subtract the two expanded forms:
(a+b+c)^2 - (a+b-c)^2 = (a^2 + b^2 + c^2 + 2ab + 2bc + 2ca) - (a^2 + b^2 + c^2 + 2ab - 2bc - 2ca)
= (a^2 + b^2 + c^2 + 2ab + 2bc + 2ca) - (a^2 + b^2 + c^2 + 2ab - 2bc - 2ca)
= 4bc + 4ca
3. Therefore, the numerator simplifies to:
4bc + 4ca
4. The whole expression becomes:
\frac{4bc + 4ca}{bc + ca}
5. This simplifies to:
\frac{4(bc + ca)}{bc + ca} = 4