A. To complete the right triangle, use the Pythagorean identity for cotangent:
\text{cot}(x) = \frac{1}{\text{tan}(x)} = \frac{1}{\frac{1}{\text{cot}(x)}} = \text{cot}(x)
Using this, we find:
x = 7\text{cot}(x)\\Rightarrow x = 7\cdot\frac{1}{\text{tan}(x)} = 7\cdot\frac{1}{\frac{1}{\text{cot}(x)}} = 7\text{cot}(x)\\Rightarrow x = 7
So the right triangle has angle x and the two other sides are 7 and 1.
B. To find sec(2\theta), we first need to find the value of \text{cos}(2\theta) using the given information. Since x = 7 and the adjacent side is 1, we have:
\text{cos}(x) = \frac{1}{7}
Now, we know that:
\text{cos}(2\theta) = 2\text{cos}^2(\theta) - 1 = 2\left(\frac{1}{7}\right)^2 - 1 = 2\left(\frac{1}{49}\right) - 1 = \frac{2}{49} - 1 = \frac{2-49}{49} = -\frac{47}{49}
Finally, we find:
\text{sec}(2\theta) = \frac{1}{\text{cos}(2\theta)} = \frac{1}{-\frac{47}{49}} = -\frac{49}{47}
C. To find \cos(\frac{\theta}{2}), we know:
\cos(\frac{\theta}{2}) = \sqrt{\frac{1 + \cos(\theta)}{2}}
From the given information, we have:
\cos(x) = \frac{1}{7}
Substitute in the formula:
\cos(\frac{x}{2}) = \sqrt{\frac{1+\frac{1}{7}}{2}} = \sqrt{\frac{8}{7\cdot2}} = \sqrt{\frac{4}{7}} = \frac{2}{\sqrt{7}}
\boxed{\cos(\frac{\theta}{2}) = \frac{2}{\sqrt{7}}}