Question

Probability problem: let u1 and u2 be two urns each containing 6 balls identical to the hit such that u1 contain 2 red balls, 3 green, and one black; and u2 2 red balls, one green and 3 black. we draw at random and simultaneously 2 balls from u1 and put them in u2, then we draw two balls at random and simultaneously from u2 which we place in u1. what is the probability that the contents of each ballot box will remain unchanged after that? And what is the probability that the contents of the ballot boxes will be interchanged?

179

likes
896 views

Answer to a math question Probability problem: let u1 and u2 be two urns each containing 6 balls identical to the hit such that u1 contain 2 red balls, 3 green, and one black; and u2 2 red balls, one green and 3 black. we draw at random and simultaneously 2 balls from u1 and put them in u2, then we draw two balls at random and simultaneously from u2 which we place in u1. what is the probability that the contents of each ballot box will remain unchanged after that? And what is the probability that the contents of the ballot boxes will be interchanged?

Expert avatar
Rasheed
4.7
110 Answers
Pour résoudre ce problème, nous allons utiliser les règles de la probabilité.

Premièrement, déterminons la probabilité que le contenu de chaque urne reste inchangé.

Étape 1: Calcul de la probabilité que les boules tirées de u1 restent dans u1.

La probabilité de tirer une boule rouge de u1 est \frac{2}{6} .

Après avoir tiré une boule rouge de u1, il reste 5 boules dans u1 et 3 boules rouges dans u2.

La probabilité de tirer une deuxième boule rouge de u1 est donc \frac{3}{5} .

La probabilité que les deux boules tirées de u1 restent dans u1 est alors \frac{2}{6} \times \frac{3}{5} = \frac{6}{30} .

Étape 2: Calcul de la probabilité que les boules tirées de u2 restent dans u2.

La probabilité de tirer une boule rouge de u2 est \frac{2}{6} .

Après avoir tiré une boule rouge de u2, il reste 4 boules dans u2 et 2 boules rouges dans u1.

La probabilité de tirer une deuxième boule rouge de u2 est donc \frac{2}{4} .

La probabilité que les deux boules tirées de u2 restent dans u2 est alors \frac{2}{6} \times \frac{2}{4} = \frac{4}{24} .

Étape 3: Calcul de la probabilité globale que le contenu de chaque urne reste inchangé.

Les deux tirages sont indépendants, donc nous multiplions les deux probabilités précédentes pour obtenir la probabilité globale :

\frac{6}{30} \times \frac{4}{24} = \frac{1}{20} .

Donc, la probabilité que le contenu de chaque urne reste inchangé est de \frac{1}{20} .

Maintenant, calculons la probabilité que le contenu des urnes soit interchangé.

La probabilité que le contenu des urnes soit interchangé est complémentaire à la probabilité que le contenu de chaque urne reste inchangé. Donc,

Probabilité du contenu des urnes interchangé = 1 - Probabilité que le contenu de chaque urne reste inchangé.

Probabilité du contenu des urnes interchangé = 1 - \frac{1}{20} = \frac{19}{20} .

Réponse :

La probabilité que le contenu de chaque urne reste inchangé est de \frac{1}{20} .

La probabilité que le contenu des urnes soit interchangé est de \frac{19}{20} .

Frequently asked questions (FAQs)
Math question: What is the limit as x approaches 3 of ((6x+10)/(2x-2)) + ((5x-1)/(x+3))?
+
What is the number of ways to arrange 5 students out of 10 in a row for a class photo?
+
What is the equation of a line passing through the points (3, 4) and (7, 8)?
+
New questions in Mathematics
a to the power of 2 minus 16 over a plus 4, what is the result?
calculate the following vector based on its base vectors a= -18i,26j
A brass cube with an edge of 3 cm at 40 °C increased its volume to 27.12 cm3. What is the final temperature that achieves this increase?
The bus one way of the road which is 10km is heading with speed of 20km/h ,then the bus the other 10km is heading with speed of 60km/h. The middle speed of the road is it equal with arithmetic speed of the v1 and v2 ?
A bird randomly chooses to land on 1 of 12 perches available in its aviary. Determine the Probability of it landing on a perch numbered 8 and then on a perch marked with a prime number; take into account that he never lands on the same perch in the sequence.
9b^2-6b-5
In a store, a person carries 14 kilos of rice and 28 kilos of flour. In what ratio are the kilos found? (Remember to simplify until you reach an irreducible fraction)
Let f(x) = x² − 1. Find the equation of the tangent line to the graph of f at the point x0 = 2.
The sum of two numbers is equal to 58 and the largest exceeds by at least 12. Find the two numbers
solve for x 50x+ 120 (176-x)= 17340
Determine the reduced equation of the straight line that is perpendicular to the straight line r: y=4x-10 and passes through the origin of the Cartesian plane
The thermal representation f(x) = 20 times 0.8 to the power of x is known from an exponential function f. Specify the intersection point with the y-axis
The physician orders 15mg of tramadol(liquid). On hand is 30mg/2mL vials. How many mL will the MA administer?
1. A pediatric client is prescribed digoxin for congestive heart failure. The dose prescribed is 40 mcg/kg twice daily. The child weighs 33 pounds. What is the dosage in mg to be given per dose? Round to the nearest hundredth. Calculate your answer in mg per dose. Enter numerical value only.____mg
The simple average of 15 , 30 , 40 , and 45 is
Calculate the difference between 407 and 27
Find the number of pounds of nails required for 17850 square feet of drywall if each thousand square feet requires 4.5 pounds of nails.
effectiveness of fiscal and monetary policy under closed and open economies
f(r) = 1/r+9 find f(x^2) + 1
f(x)= 9-x^2 find (f(x+h)-f(x) )/h