Question

Probability problem: let u1 and u2 be two urns each containing 6 balls identical to the hit such that u1 contain 2 red balls, 3 green, and one black; and u2 2 red balls, one green and 3 black. we draw at random and simultaneously 2 balls from u1 and put them in u2, then we draw two balls at random and simultaneously from u2 which we place in u1. what is the probability that the contents of each ballot box will remain unchanged after that? And what is the probability that the contents of the ballot boxes will be interchanged?

179

likes
896 views

Answer to a math question Probability problem: let u1 and u2 be two urns each containing 6 balls identical to the hit such that u1 contain 2 red balls, 3 green, and one black; and u2 2 red balls, one green and 3 black. we draw at random and simultaneously 2 balls from u1 and put them in u2, then we draw two balls at random and simultaneously from u2 which we place in u1. what is the probability that the contents of each ballot box will remain unchanged after that? And what is the probability that the contents of the ballot boxes will be interchanged?

Expert avatar
Rasheed
4.7
109 Answers
Pour résoudre ce problème, nous allons utiliser les règles de la probabilité.

Premièrement, déterminons la probabilité que le contenu de chaque urne reste inchangé.

Étape 1: Calcul de la probabilité que les boules tirées de u1 restent dans u1.

La probabilité de tirer une boule rouge de u1 est \frac{2}{6} .

Après avoir tiré une boule rouge de u1, il reste 5 boules dans u1 et 3 boules rouges dans u2.

La probabilité de tirer une deuxième boule rouge de u1 est donc \frac{3}{5} .

La probabilité que les deux boules tirées de u1 restent dans u1 est alors \frac{2}{6} \times \frac{3}{5} = \frac{6}{30} .

Étape 2: Calcul de la probabilité que les boules tirées de u2 restent dans u2.

La probabilité de tirer une boule rouge de u2 est \frac{2}{6} .

Après avoir tiré une boule rouge de u2, il reste 4 boules dans u2 et 2 boules rouges dans u1.

La probabilité de tirer une deuxième boule rouge de u2 est donc \frac{2}{4} .

La probabilité que les deux boules tirées de u2 restent dans u2 est alors \frac{2}{6} \times \frac{2}{4} = \frac{4}{24} .

Étape 3: Calcul de la probabilité globale que le contenu de chaque urne reste inchangé.

Les deux tirages sont indépendants, donc nous multiplions les deux probabilités précédentes pour obtenir la probabilité globale :

\frac{6}{30} \times \frac{4}{24} = \frac{1}{20} .

Donc, la probabilité que le contenu de chaque urne reste inchangé est de \frac{1}{20} .

Maintenant, calculons la probabilité que le contenu des urnes soit interchangé.

La probabilité que le contenu des urnes soit interchangé est complémentaire à la probabilité que le contenu de chaque urne reste inchangé. Donc,

Probabilité du contenu des urnes interchangé = 1 - Probabilité que le contenu de chaque urne reste inchangé.

Probabilité du contenu des urnes interchangé = 1 - \frac{1}{20} = \frac{19}{20} .

Réponse :

La probabilité que le contenu de chaque urne reste inchangé est de \frac{1}{20} .

La probabilité que le contenu des urnes soit interchangé est de \frac{19}{20} .

Frequently asked questions (FAQs)
Math question: "What are the x-intercepts of the quadratic function y = x^2 - 4x + 3?"
+
Math question: Find the derivative of f(x) = 3x^2 - 2x + 5 using the basic rules of derivatives.
+
What is the amplitude, period, phase shift, and vertical shift of the sine function given f(x) = sin x?
+
New questions in Mathematics
Let 𝑢 = 𝑓(𝑥, 𝑦) = (𝑒^𝑥)𝑠𝑒𝑛(3𝑦). Check if 9((𝜕^2) u / 𝜕(𝑥^2)) +((𝜕^2) 𝑢 / 𝜕(𝑦^2)) = 0
Determine the correct value: A company knows that invoices pending collection have a normal distribution with a mean of $1.65 million, with a standard deviation of $0.2 million, then: The probability that an invoice pending collection has an amount that is within more than 2 deviations below the mean, is:
The Lenovo company manufactures laptop computers, it is known that for every 60 laptops produced, 54 go on the market with the highest quality standards. If a sample of 15 laptops is taken, calculate the probability that: Exactly 2 are not of high quality
9b^2-6b-5
"If three wolves catch three rabbits in three hours, how many wolves would it take to catch a hundred rabbits in a hundred hours?" The answer is the number of response units.
A pair of die is thrown and the absolute difference of the two scores is recorded. What is the probability of the absolute difference being 4 or more?
What is the total tolerance for a dimension from 1.996" to 2.026*?
calculate the area in square units of A rectangle with length 6cm and breadth 5cm
A person decides to invest money in fixed income securities to redeem it at the end of 3 years. In this way, you make monthly deposits of R$300.00 in the 1st year, R$400.00 in the 2nd year and R$500.00 in the 3rd year. Calculate the amount, knowing that compound interest is 0.6% per month for the entire period. The answer is 15,828.60
Let A, B, C and D be sets such that | A| = |C| and |B| = |D|. Prove that |A × B| = |C × D|
A researcher is interested in voting preferences on change of the governing constitution in a certain country controlled by two main parties A and B. A questionnaire was developed and sent to a random sample of voters. The cross tabs are as follows Favour Neutral Oppose Membership: Party A 70 90 85 Party B 50 50 155 Test at α = 0.05 whether party membership and voting preference are associated and state the conditions required for chi-square test results to be valid.
Which of the methods below can be used to workout 95% of an amount? a. Dividing the amount 100 and multiply by 95 b. Working out 5% of the amount and taking it away from the full amount c. Dividing 95 by 100 and multiplying the answer by the amount d. Dividing the amount by 95 and then multiply by 100
What is 75 percent less than 60
In poker, a full house consists of five cards, where two of the cards have the same number (or letter) and the remaining three also have the same number (or letter) as each other (but not as the previous two cards). Use a search engine or Wikipedia to understand the concept better if necessary. In how many different ways can one obtain a full house?
Log0
if y=1/w^2 yw=2-x; find dy/dx
If the mean of the following numbers is 17, find the c value. Produce an algebraic solution. Guess and check is unacceptable. 12, 18, 21, c, 13
Marc, Jean and Michelle have traveled a lot. Marc drove twice as much as Jean, but it was Michelle who drove the most with 100km more than Marc. They respected their objective of not exceeding 1350km of distance. How far did John drive?
What is the set-off agreement? Make your own example, describe and put in T accounts how you record transactions.
x(squared) -8x=0