Question

Probability problem: let u1 and u2 be two urns each containing 6 balls identical to the hit such that u1 contain 2 red balls, 3 green, and one black; and u2 2 red balls, one green and 3 black. we draw at random and simultaneously 2 balls from u1 and put them in u2, then we draw two balls at random and simultaneously from u2 which we place in u1. what is the probability that the contents of each ballot box will remain unchanged after that? And what is the probability that the contents of the ballot boxes will be interchanged?

179

likes
896 views

Answer to a math question Probability problem: let u1 and u2 be two urns each containing 6 balls identical to the hit such that u1 contain 2 red balls, 3 green, and one black; and u2 2 red balls, one green and 3 black. we draw at random and simultaneously 2 balls from u1 and put them in u2, then we draw two balls at random and simultaneously from u2 which we place in u1. what is the probability that the contents of each ballot box will remain unchanged after that? And what is the probability that the contents of the ballot boxes will be interchanged?

Expert avatar
Rasheed
4.7
110 Answers
Pour résoudre ce problème, nous allons utiliser les règles de la probabilité.

Premièrement, déterminons la probabilité que le contenu de chaque urne reste inchangé.

Étape 1: Calcul de la probabilité que les boules tirées de u1 restent dans u1.

La probabilité de tirer une boule rouge de u1 est \frac{2}{6} .

Après avoir tiré une boule rouge de u1, il reste 5 boules dans u1 et 3 boules rouges dans u2.

La probabilité de tirer une deuxième boule rouge de u1 est donc \frac{3}{5} .

La probabilité que les deux boules tirées de u1 restent dans u1 est alors \frac{2}{6} \times \frac{3}{5} = \frac{6}{30} .

Étape 2: Calcul de la probabilité que les boules tirées de u2 restent dans u2.

La probabilité de tirer une boule rouge de u2 est \frac{2}{6} .

Après avoir tiré une boule rouge de u2, il reste 4 boules dans u2 et 2 boules rouges dans u1.

La probabilité de tirer une deuxième boule rouge de u2 est donc \frac{2}{4} .

La probabilité que les deux boules tirées de u2 restent dans u2 est alors \frac{2}{6} \times \frac{2}{4} = \frac{4}{24} .

Étape 3: Calcul de la probabilité globale que le contenu de chaque urne reste inchangé.

Les deux tirages sont indépendants, donc nous multiplions les deux probabilités précédentes pour obtenir la probabilité globale :

\frac{6}{30} \times \frac{4}{24} = \frac{1}{20} .

Donc, la probabilité que le contenu de chaque urne reste inchangé est de \frac{1}{20} .

Maintenant, calculons la probabilité que le contenu des urnes soit interchangé.

La probabilité que le contenu des urnes soit interchangé est complémentaire à la probabilité que le contenu de chaque urne reste inchangé. Donc,

Probabilité du contenu des urnes interchangé = 1 - Probabilité que le contenu de chaque urne reste inchangé.

Probabilité du contenu des urnes interchangé = 1 - \frac{1}{20} = \frac{19}{20} .

Réponse :

La probabilité que le contenu de chaque urne reste inchangé est de \frac{1}{20} .

La probabilité que le contenu des urnes soit interchangé est de \frac{19}{20} .

Frequently asked questions (FAQs)
What is the average time it takes for a car to travel 100 miles?
+
What is the area of a square with side length 'a'?
+
What is the lateral surface area of a right circular cylinder with radius r and height h?
+
New questions in Mathematics
what is 3% of 105?
I) Find the directional derivative of 𝑓(𝑥, 𝑦) = 𝑥 sin 𝑦 at (1,0) in the direction of the unit vector that make an angle of 𝜋/4 with positive 𝑥-axis.
In a store there are packets of chocolate, strawberry, tutti-frutti, lemon, grape and banana sweets. If a person needs to choose 4 flavors of candy from those available, how many ways can they make that choice?
The sum of two numbers is 6, and the sum of their squares is 28. Find these numbers exactly
4x567
Margin of error E=0.30 populations standard deviation =2.5. Population means with 95% confidence. What I the required sample size (round up to the whole number)
Desarrolla (2x)(3y + 2x)5
A storage maker price is $2.50 per square feet. Find the price of a custom shed 4 yards long, and 5yards wide and 8 feet tall
7=-4/3y -1
Use the power rule for logarithms to solve the following word problem exactly. If you invest $1, 000 at 5% interest compounded annually, how many years will it take before you have $2,000?
The two sides of the triangle are 12 cm and 5 cm, and the angle between the sides is 60°. Cover the area of ​​the triangle!
The sick-leave time of employees in a firm in a month is normally with a mean of 100 hours and a standard deviation of 20 hours. Find the probability that the sick-leave time of an employee in a month exceeds 130 hours.
In measuring the internal radius of a circular sewer the measurement is 2% too large. If this measurement is then used to calculate the circular cross-sectional area of the pipe: Determine, by using the binomial theory, the percentage error that will occur compared to the true area.
Write the equation of the line that is parallel to y= 4x-7 and has a y- intercept at (0,5)
7- A printing company found in its investigations that there were an average of 6 errors in 150-page prints. Based on this information, what is the probability of there being 48 errors in a 1200-page job?
1. The cost to transport 250 packages of cement 120 kilometers is $600. What will be the cost to transport 500 packages 300 kilometers?
Convert (324)𝑓𝑖𝑣𝑒 into base-ten
The perimeter of a rectangular rug is 42 feet. The width is 9 feet. What is the length?
Paul invites 12 friends to his birthday. He wants to give 15 candies to everyone two. The candies are sold in packs of 25. How many should he buy? packages?
(3.1x10^3g^2)/(4.56x10^2g)