Question

Probability problem: let u1 and u2 be two urns each containing 6 balls identical to the hit such that u1 contain 2 red balls, 3 green, and one black; and u2 2 red balls, one green and 3 black. we draw at random and simultaneously 2 balls from u1 and put them in u2, then we draw two balls at random and simultaneously from u2 which we place in u1. what is the probability that the contents of each ballot box will remain unchanged after that? And what is the probability that the contents of the ballot boxes will be interchanged?

179

likes
896 views

Answer to a math question Probability problem: let u1 and u2 be two urns each containing 6 balls identical to the hit such that u1 contain 2 red balls, 3 green, and one black; and u2 2 red balls, one green and 3 black. we draw at random and simultaneously 2 balls from u1 and put them in u2, then we draw two balls at random and simultaneously from u2 which we place in u1. what is the probability that the contents of each ballot box will remain unchanged after that? And what is the probability that the contents of the ballot boxes will be interchanged?

Expert avatar
Rasheed
4.7
110 Answers
Pour résoudre ce problème, nous allons utiliser les règles de la probabilité.

Premièrement, déterminons la probabilité que le contenu de chaque urne reste inchangé.

Étape 1: Calcul de la probabilité que les boules tirées de u1 restent dans u1.

La probabilité de tirer une boule rouge de u1 est \frac{2}{6} .

Après avoir tiré une boule rouge de u1, il reste 5 boules dans u1 et 3 boules rouges dans u2.

La probabilité de tirer une deuxième boule rouge de u1 est donc \frac{3}{5} .

La probabilité que les deux boules tirées de u1 restent dans u1 est alors \frac{2}{6} \times \frac{3}{5} = \frac{6}{30} .

Étape 2: Calcul de la probabilité que les boules tirées de u2 restent dans u2.

La probabilité de tirer une boule rouge de u2 est \frac{2}{6} .

Après avoir tiré une boule rouge de u2, il reste 4 boules dans u2 et 2 boules rouges dans u1.

La probabilité de tirer une deuxième boule rouge de u2 est donc \frac{2}{4} .

La probabilité que les deux boules tirées de u2 restent dans u2 est alors \frac{2}{6} \times \frac{2}{4} = \frac{4}{24} .

Étape 3: Calcul de la probabilité globale que le contenu de chaque urne reste inchangé.

Les deux tirages sont indépendants, donc nous multiplions les deux probabilités précédentes pour obtenir la probabilité globale :

\frac{6}{30} \times \frac{4}{24} = \frac{1}{20} .

Donc, la probabilité que le contenu de chaque urne reste inchangé est de \frac{1}{20} .

Maintenant, calculons la probabilité que le contenu des urnes soit interchangé.

La probabilité que le contenu des urnes soit interchangé est complémentaire à la probabilité que le contenu de chaque urne reste inchangé. Donc,

Probabilité du contenu des urnes interchangé = 1 - Probabilité que le contenu de chaque urne reste inchangé.

Probabilité du contenu des urnes interchangé = 1 - \frac{1}{20} = \frac{19}{20} .

Réponse :

La probabilité que le contenu de chaque urne reste inchangé est de \frac{1}{20} .

La probabilité que le contenu des urnes soit interchangé est de \frac{19}{20} .

Frequently asked questions (FAQs)
What is the measure of the third angle in a right-angled triangle if the other two angles are 45 degrees and 90 degrees?
+
What is the output value of the linear function f(x) = x when the input value x is equal to 5?
+
What is the equation of an ellipse with a major axis of 10 units, minor axis of 6 units, centered at (2, -3), and rotated 45 degrees counterclockwise?
+
New questions in Mathematics
Find an arc length parameterization of the curve that has the same orientation as the given curve and for which the reference point corresponds to t=0. Use an arc length s as a parameter. r(t) = 3(e^t) cos (t)i + 3(e^t)sin(t)j; 0<=t<=(3.14/2)
2(2+2x)=12
A circular park has a diameter of 150ft. A circular fence is to be placed on the edge of this park. Calculate the cost of fencing this park if the rate charged is $7 per foot. Use π = 3.14.
I need .23 turned into a fraction
The bus one way of the road which is 10km is heading with speed of 20km/h ,then the bus the other 10km is heading with speed of 60km/h. The middle speed of the road is it equal with arithmetic speed of the v1 and v2 ?
A National Solidarity Bond offers A 5 year bond offering a gross return of 15% Calculate the AER for this investment. (Give your answer to two decimal places, no need for the percent or € sign in your answer)
Find the equation of the line perpendicular to −5𝑥−3𝑦+5=0 passing through the point (0,−2)
The equation of the straight line that passes through the coordinate point (2,5) and is parallel to the straight line with equation x 2y 9 = 0 is
Lim x → 0 (2x ^ 3 - 10x ^ 7) / 5 * x ^ 3 - 4x )=2
A company made 150,000 in the first year 145,000 in the second 140,000 in the third year successively during the first decade of this company's existence it made a total of
2x2
We plan to test whether the mean mRNA expression level differs between two strains of yeast, for each of 8,000 genes. We will measure the expression levels of each gene, in n samples of strain 1 and m samples of strain 2. We plan to compute a P-value for each gene, using an unpaired two-sample t-test for each gene (the particular type of test does not matter). a) What are the null hypotheses in these tests (in words)? [2] b) If, in fact, the two strains are identical, how many of these tests do we expect to produce a P-value exceeding 1/4? [2]
A factory produces glass for windows. The thickness X of an arbitrarily selected pane of glass is assumed to be Normally distributed with expectation μ = 4.10 and standard deviation σ = 0.04. Expectation and Standard deviation is measured in millimeters. What is the probability that an arbitrary route has a thickness less than 4.00 mm?
Evaluate ab+dc if a=56 , b=−34 , c=0.4 , and d=12 . Write in simplest form.
A membership to the gym cost $25 per person in 1995. The membership cost has increased by an average $6 per person for each year since 1995. Write a linear equation for the cost of a gym membership for one person since 1995. What is the cost of a gym membership in 2009?
56 × 12 = 672. How should you adjust this answer 672 to determine 57 × 12? a) The answer increases by 1 b) The answer increases by 57 c) The answer increases by 56 d) The answer increases by 12
the length of the fenced in area is to be 5 ft greater than the width and the total amount of fencing to be used is 89 ft find the width and length
15=5(x+3)
f(x)= 9-x^2 find (f(x+h)-f(x) )/h
Write a linear equation in the slope-intercept form. Slope of the line is -1 and goes through (8,4)