Question

The size P of a certain insect population at time t (in days) obeys the function P(t)=900e^0.02t A. Determine the number of insects at t=0 days. B. What is the growth rate of the insect population? C. What is the population after 10 days? D. When will the insect population reach 1350? E. When will the insect population double?

268

likes
1340 views

Answer to a math question The size P of a certain insect population at time t (in days) obeys the function P(t)=900e^0.02t A. Determine the number of insects at t=0 days. B. What is the growth rate of the insect population? C. What is the population after 10 days? D. When will the insect population reach 1350? E. When will the insect population double?

Expert avatar
Timmothy
4.8
99 Answers
A. To determine the number of insects at t = 0 days, we substitute t = 0 into P(t) = 900e^{0.02t} :

P(0) = 900e^{0.02 \cdot 0} = 900e^0 = 900 \times 1 = 900

So, the number of insects at t = 0 days is 900 .

B. The growth rate in the function P(t) = 900e^{0.02t} is given by the exponent's coefficient, 0.02 . This corresponds to a growth rate of 2\% .

C. To determine the population after 10 days, we substitute t = 10 into P(t) = 900e^{0.02t} :

P(10) = 900e^{0.02 \cdot 10} = 900e^{0.2}

Using a calculator to evaluate e^{0.2} \approx 1.2214 :

P(10)=900\times1.2214\approx1099.26

So, the population after 10 days is approximately 1099.26 insects.

D. To find when the insect population will reach 1350 , we set P(t) = 1350 and solve for t :

1350 = 900e^{0.02t}

Dividing both sides by 900 gives:

1.5 = e^{0.02t}

Taking the natural logarithm of both sides:

\ln(1.5) = 0.02t

So:

t = \frac{\ln(1.5)}{0.02} \approx \frac{0.4055}{0.02} \approx 20.27

Therefore, the insect population will reach 1350 in approximately 20.27 days.

E. To find when the insect population will double, we set P(t) = 2 \times 900 = 1800 and solve for t :

1800 = 900e^{0.02t}

Dividing both sides by 900 gives:

2 = e^{0.02t}

Taking the natural logarithm of both sides:

\ln(2) = 0.02t

So:

t = \frac{\ln(2)}{0.02} \approx \frac{0.6931}{0.02} \approx 34.66

Therefore, the insect population will double in approximately 34.66 days.

Frequently asked questions (FAQs)
Math question: Convert 4,500,000,000,000 to scientific notation with an exponent.
+
What is the vertex of the quadratic function y = -2x² + 4x - 3?
+
What is the limit as x approaches 2 of (3x^2 - 5x + 2) / (x - 2) ?
+
New questions in Mathematics
5 . {2/5 + [ (8/-9) - (1/-7) + (-2/5) ] ÷ (2/-5)} . 8/15
431414-1*(11111-1)-4*(5*3)
8x-(5-x)
the value of sin 178°58'
What will be the density of a fluid whose volume is 130 cubic meters contains 16 technical units of mass? If required Consider g=10 m/s2
(5u + 6)-(3u+2)=
A job takes 9 workers 92 hours to finish. How many hours would it take 5 workers to complete the same job?
is the x element (180,270), if tanx-3cotx=2, sinx ?
A person decides to invest money in fixed income securities to redeem it at the end of 3 years. In this way, you make monthly deposits of R$300.00 in the 1st year, R$400.00 in the 2nd year and R$500.00 in the 3rd year. Calculate the amount, knowing that compound interest is 0.6% per month for the entire period. The answer is 15,828.60
The simple average of 15 , 30 , 40 , and 45 is
Use a pattern approach to explain why (-2)(-3)=6
Determine a general formula​ (or formulas) for the solution to the following equation.​ Then, determine the specific solutions​ (if any) on the interval [0,2π). cos30=0
Let f and g be defined in R and suppose that there exists M > 0 such that |f(x) − f(p)| ≤ M|g(x) − g(p)|, for all x. Prove that if g is continuous in p, then f will also be continuous in p.
Calculate the change in internal energy of a gas that receives 16000 J of heat at constant pressure (1.3 atm) expanding from 0.100 m3 to 0.200 m3. Question 1Answer to. 7050J b. 2125J c. None of the above d. 2828J and. 10295 J
Calculate the area of the parallelogram with adjacent vertices (1,4, −2), (−3,1,6) 𝑦 (1, −2,3)
In an economy with C= 10+0.8 Yd ; I= 20+0.1Y ; G= 100 ; X= 20 ; M=10+0.2Y ; T=-10+0.2Y and R= 10, when knew that Yd= Y-T+R. How much is the budget? A. -23.18 B. -28.13 C. -13.28 D. -32.18
2x-5-x+2=5x-11
Consider the function f(x)=1/2(x+1)^2-3. Use the preceding/following interval method to estimate the instantaneous rate of change at 𝑥 = 1.
g(x)=3(x+8). What is the value of g(12)
6(k-7) -2=5