Question

Prove that in every right triangle whose acute angles measure 75 and 15 degrees, the height corresponding to the hypotenuse is equal to a quarter of it.

71

likes
355 views

Answer to a math question Prove that in every right triangle whose acute angles measure 75 and 15 degrees, the height corresponding to the hypotenuse is equal to a quarter of it.

Expert avatar
Miles
4.9
114 Answers
He aquí una prueba de que en todo triángulo rectángulo con ángulos agudos de 75 y 15 grados, la altura correspondiente a la hipotenusa es igual a un cuarto de la hipotenusa: **1. Identificar elementos clave:** Denotemos el triángulo rectángulo con: * A como el ángulo recto * B como el vértice del ángulo de 75 grados * C como el vértice del ángulo de 15 grados * h como la altura trazada desde B hacia el lado AC (la hipotenusa) * a como la longitud del lado AB (opuesto al ángulo de 75 grados) * c como la longitud del lado AC (la hipotenusa) **2. Relacionar ángulos y lados usando trigonometría:** Como tenemos un triángulo rectángulo y queremos encontrar la altura (h) en relación con la hipotenusa (c), podemos usar razones trigonométricas. * Conocemos un ángulo agudo (B = 75 grados) y necesitamos resolver un lado relativo a la hipotenusa. **3. Aplicar función sinusoidal:** La función seno (sin) relaciona el lado opuesto (a) con la hipotenusa (c) en un triángulo rectángulo: pecado(B) = a/c Sabemos que B = 75 grados y queremos encontrar h, pero esta ecuación nos ayuda a encontrar el lado a: a = c * sin(B) = c * sin(75°) **(Ecuación 1)** **4. Relacionar otros lados usando trigonometría:** Como el otro ángulo agudo (C) mide 15 grados, podemos encontrar el lado restante (b) usando el hecho de que la suma de los ángulos de un triángulo es 180 grados: A + B + C = 180° 90° + 75° + C = 180° C = 15° Ahora, podemos usar la función coseno (cos) para relacionar el lado b con la hipotenusa (c): porque(C) = b / c Sabemos que C = 15 grados, pero no estamos resolviendo directamente b. Esta ecuación es para referencia futura. **5. Altura relativa (h) y lado (a):** El triángulo ABC es similar a un triángulo rectángulo más pequeño formado por la altura (h), la mitad de la base (b/2) y el ángulo recto A. Estos triángulos comparten el mismo ángulo agudo B (75 grados). Como los lados correspondientes de triángulos semejantes son proporcionales: h / (b/2) = sin(B) **(Ecuación 2)** **6. Combinando ecuaciones y resolviendo h:** Queremos expresar h en términos de c. Ya encontramos a en la ecuación (1): a = c * sin(75°). Sustituya este valor de a en la ecuación (2): h / (b/2) = pecado(75°) h / [(c * cos(15°))/2] = c * sin(75°) **(sustituyendo b/c de la relación de función cos)** **7. Simplificando y aislando h:** * Simplifica el denominador: h / [c * cos(15°)/2] = 2h / c * cos(15°) * Como cos(15°) es un valor positivo (ángulo agudo), podemos multiplicar ambos lados por c * cos(15°): 2h = c * sen(75°) * cos(15°) * Sabemos que sin(75°) * cos(15°) se puede expresar como una identidad trigonométrica usando la fórmula de producto por suma: pecado(75°) * cos(15°) = (sen(90°) - pecado(15°)) * cos(15°) = cos(15°) - pecado(15°) * Sustituye esta identidad y resuelve para h: 2h = c * (cos(15°) - sen(15°)) h = c * (cos(15°) - sen(15°)) / 2 **8. Conclusión:** Dado que cos(15°) y sen(15°) son valores positivos (ángulo agudo), su diferencia es positiva. Por lo tanto, h = c * (cos(15°) - sin(15°)) / 2 representa un valor positivo que es **un cuarto de la hipotenusa (c)**. Hemos demostrado que en todo triángulo rectángulo con ángulos agudos de 75 y 15 grados, la altura correspondiente a la hipotenusa es igual a un cuarto de la hipotenusa.

Frequently asked questions (FAQs)
What is 15 multiplied by 12?
+
What is the application of the chain rule in finding the derivative of composite functions?
+
How many degrees are in a right triangle?
+
New questions in Mathematics
Write 32/25 as a percent
Evaluate limx→∞tan−1(x) using that y=tan−1(x) exactly when x=tan(y) . (Hint: Both tan and tan−1 are continuous!)
The Lenovo company manufactures laptop computers, it is known that for every 60 laptops produced, 54 go on the market with the highest quality standards. If a sample of 15 laptops is taken, calculate the probability that: Exactly 2 are not of high quality
4.2x10^_6 convert to standard notation
The sum of two numbers is 6, and the sum of their squares is 28. Find these numbers exactly
Suppose X has a Poisson distribution, with a mean of 0.4. Determine the probability that x is at most 2.
Determine the momentum of a 20 kg body traveling at 20 m/s.
If you randomly selected one person from the 900 subjects in this study, what is the probability that the person exhibits the minimum BMI?
-3(-4x+5)=-6(7x-8)+9-10x
find x in the equation 2x-4=6
A box contains 18 blue balls and 33 white balls. What is the ratio of the blue to white balls?
20% of 3500
Find all real numbers x that satisfy the equation \sqrt{x^2-2}=\sqrt{3-x}
Log5 625
Which of the methods below can be used to workout 95% of an amount? a. Dividing the amount 100 and multiply by 95 b. Working out 5% of the amount and taking it away from the full amount c. Dividing 95 by 100 and multiplying the answer by the amount d. Dividing the amount by 95 and then multiply by 100
Consider mixing 150 ml, 0.1M, HCI with 100 ml, 0.2M, KOH solution. Determine the pH of final solution.
A salesperson earns a base salary of $600 per month plus a commission of 10% of the sales she makes. You discover that on average, it takes you an hour and a half to make $100 worth of sales. How many hours will you have to work on average each month for your income to be $2000?
A 20-year old hopes to retire by age 65. To help with future expenses, they invest $6 500 today at an interest rate of 6.4% compounded annually. At age 65, what is the difference between the exact accumulated value and the approximate accumulated value (using the Rule of 72)?
An export company grants a bonus of $100,000 pesos to distribute among three of its best employees, so that the first receives double the second and the latter receives triple the third. How much did each person receive?
The car with an irresponsible driver starts to brake when it goes through a red light. When passing the traffic light, he does so at a speed of 115 kph in the right lane. Further ahead, 70 meters from the traffic light, a child is crossing the street and falls. If the effect of the car's brakes is equivalent to a deceleration of magnitude 5.7m/s². Is the child hit by the car or not? How far from the traffic light does the car stop?