Question

Prove that in every right triangle whose acute angles measure 75 and 15 degrees, the height corresponding to the hypotenuse is equal to a quarter of it.

71

likes
355 views

Answer to a math question Prove that in every right triangle whose acute angles measure 75 and 15 degrees, the height corresponding to the hypotenuse is equal to a quarter of it.

Expert avatar
Miles
4.9
114 Answers
He aquí una prueba de que en todo triángulo rectángulo con ángulos agudos de 75 y 15 grados, la altura correspondiente a la hipotenusa es igual a un cuarto de la hipotenusa: **1. Identificar elementos clave:** Denotemos el triángulo rectángulo con: * A como el ángulo recto * B como el vértice del ángulo de 75 grados * C como el vértice del ángulo de 15 grados * h como la altura trazada desde B hacia el lado AC (la hipotenusa) * a como la longitud del lado AB (opuesto al ángulo de 75 grados) * c como la longitud del lado AC (la hipotenusa) **2. Relacionar ángulos y lados usando trigonometría:** Como tenemos un triángulo rectángulo y queremos encontrar la altura (h) en relación con la hipotenusa (c), podemos usar razones trigonométricas. * Conocemos un ángulo agudo (B = 75 grados) y necesitamos resolver un lado relativo a la hipotenusa. **3. Aplicar función sinusoidal:** La función seno (sin) relaciona el lado opuesto (a) con la hipotenusa (c) en un triángulo rectángulo: pecado(B) = a/c Sabemos que B = 75 grados y queremos encontrar h, pero esta ecuación nos ayuda a encontrar el lado a: a = c * sin(B) = c * sin(75°) **(Ecuación 1)** **4. Relacionar otros lados usando trigonometría:** Como el otro ángulo agudo (C) mide 15 grados, podemos encontrar el lado restante (b) usando el hecho de que la suma de los ángulos de un triángulo es 180 grados: A + B + C = 180° 90° + 75° + C = 180° C = 15° Ahora, podemos usar la función coseno (cos) para relacionar el lado b con la hipotenusa (c): porque(C) = b / c Sabemos que C = 15 grados, pero no estamos resolviendo directamente b. Esta ecuación es para referencia futura. **5. Altura relativa (h) y lado (a):** El triángulo ABC es similar a un triángulo rectángulo más pequeño formado por la altura (h), la mitad de la base (b/2) y el ángulo recto A. Estos triángulos comparten el mismo ángulo agudo B (75 grados). Como los lados correspondientes de triángulos semejantes son proporcionales: h / (b/2) = sin(B) **(Ecuación 2)** **6. Combinando ecuaciones y resolviendo h:** Queremos expresar h en términos de c. Ya encontramos a en la ecuación (1): a = c * sin(75°). Sustituya este valor de a en la ecuación (2): h / (b/2) = pecado(75°) h / [(c * cos(15°))/2] = c * sin(75°) **(sustituyendo b/c de la relación de función cos)** **7. Simplificando y aislando h:** * Simplifica el denominador: h / [c * cos(15°)/2] = 2h / c * cos(15°) * Como cos(15°) es un valor positivo (ángulo agudo), podemos multiplicar ambos lados por c * cos(15°): 2h = c * sen(75°) * cos(15°) * Sabemos que sin(75°) * cos(15°) se puede expresar como una identidad trigonométrica usando la fórmula de producto por suma: pecado(75°) * cos(15°) = (sen(90°) - pecado(15°)) * cos(15°) = cos(15°) - pecado(15°) * Sustituye esta identidad y resuelve para h: 2h = c * (cos(15°) - sen(15°)) h = c * (cos(15°) - sen(15°)) / 2 **8. Conclusión:** Dado que cos(15°) y sen(15°) son valores positivos (ángulo agudo), su diferencia es positiva. Por lo tanto, h = c * (cos(15°) - sin(15°)) / 2 representa un valor positivo que es **un cuarto de la hipotenusa (c)**. Hemos demostrado que en todo triángulo rectángulo con ángulos agudos de 75 y 15 grados, la altura correspondiente a la hipotenusa es igual a un cuarto de la hipotenusa.

Frequently asked questions (FAQs)
Math question: How many times does 1/4 fit into 3/5? (
+
What is the length of the side adjacent to an angle of 40 degrees, with the opposite side measuring 5 units?
+
What is the limit of (3x^2 + 5x + 2)/(4x^2 - 3x + 1) as x approaches 2?
+
New questions in Mathematics
5(4x+3)=75
(x^2+3x)/(x^2-9)=
How do you think the company has increased or decreased its income?
4.2x10^_6 convert to standard notation
1 plus 1
Determine the absolute extrema of the function 𝑓(𝑥)=𝑥3−18𝑥2 96𝑥 , on the interval [1,10]
The actual length of an object is 1.3 m . If the blueprint uses a scale of 1 : 12 , what is the length of the line on the drawing?
2x2 and how much?
During a fishing trip Alex notices that the height h of the tide (in metres) is given by h=1−(1/2)*cos(πt/6) where t is measued in hours from the start of the trip. (a) Enter the exact value of h at the start of the trip in the box below.
Exercise 1 An ejidal association wishes to determine the distribution for the three different crops that it can plant for the next season on its available 900 hectares. Information on the total available and how many resources are required for each hectare of cultivation is shown in the following tables: Total available resource Water 15,000 m3 Fertilizer 5,000 kg Labor 125 day laborers Requirements per cultivated hectare Corn Soybeans Wheat Water 15 25 20 Fertilizer 5 8 7 Labor** 1/8 1/5 1/4 *The data in fraction means that with one day laborer it will be possible to care for 8, 5 and 4 hectares respectively. * Sales of crops 1 and 3, according to information from the Department of Agriculture, are guaranteed and exceed the capacity of the cooperative. However, soybeans must be limited to a maximum of 150 hectares. On the other hand, the profits for each hectare of crop obtained are estimated at: $7,500 for corn, $8,500 for soybeans and $8,000 for wheat. The objectives are to determine: • How many hectares of each crop must be allocated so that the profit is maximum. R= • The estimated profits for the ejidal cooperative in the next growing season. R=
The simple average of 15 , 30 , 40 , and 45 is
What is 75 percent less than 60
The mass of 120 molecules of X2C4 is 9127.2 amu. Identify the unknown atom, X, by finding the atomic mass. The atomic mass of C is 12.01 amu/atom
A diamond ring was reduced from $999.99 to $689.99. Find the percent reduction in the price. Round the answer to the nearest tenth of a percent, if necessary.
We plan to test whether the mean mRNA expression level differs between two strains of yeast, for each of 8,000 genes. We will measure the expression levels of each gene, in n samples of strain 1 and m samples of strain 2. We plan to compute a P-value for each gene, using an unpaired two-sample t-test for each gene (the particular type of test does not matter). a) What are the null hypotheses in these tests (in words)? [2] b) If, in fact, the two strains are identical, how many of these tests do we expect to produce a P-value exceeding 1/4? [2]
Determine the kinetic energy of a baseball whose mass is 100 grams and has a speed of 30 m/s.
2 - 6x = -16x + 28
To paint a 250 m wall, a number of workers were employed. If the wall were 30 m longer, 9 more workers would be needed. How many were employed at the beginning?
calculate the product of 4 and 1/8
9n + 7(-8 + 4k) use k=2 and n=3