Question

Prove that in every right triangle whose acute angles measure 75 and 15 degrees, the height corresponding to the hypotenuse is equal to a quarter of it.

71

likes
355 views

Answer to a math question Prove that in every right triangle whose acute angles measure 75 and 15 degrees, the height corresponding to the hypotenuse is equal to a quarter of it.

Expert avatar
Miles
4.9
114 Answers
He aquí una prueba de que en todo triángulo rectángulo con ángulos agudos de 75 y 15 grados, la altura correspondiente a la hipotenusa es igual a un cuarto de la hipotenusa: **1. Identificar elementos clave:** Denotemos el triángulo rectángulo con: * A como el ángulo recto * B como el vértice del ángulo de 75 grados * C como el vértice del ángulo de 15 grados * h como la altura trazada desde B hacia el lado AC (la hipotenusa) * a como la longitud del lado AB (opuesto al ángulo de 75 grados) * c como la longitud del lado AC (la hipotenusa) **2. Relacionar ángulos y lados usando trigonometría:** Como tenemos un triángulo rectángulo y queremos encontrar la altura (h) en relación con la hipotenusa (c), podemos usar razones trigonométricas. * Conocemos un ángulo agudo (B = 75 grados) y necesitamos resolver un lado relativo a la hipotenusa. **3. Aplicar función sinusoidal:** La función seno (sin) relaciona el lado opuesto (a) con la hipotenusa (c) en un triángulo rectángulo: pecado(B) = a/c Sabemos que B = 75 grados y queremos encontrar h, pero esta ecuación nos ayuda a encontrar el lado a: a = c * sin(B) = c * sin(75°) **(Ecuación 1)** **4. Relacionar otros lados usando trigonometría:** Como el otro ángulo agudo (C) mide 15 grados, podemos encontrar el lado restante (b) usando el hecho de que la suma de los ángulos de un triángulo es 180 grados: A + B + C = 180° 90° + 75° + C = 180° C = 15° Ahora, podemos usar la función coseno (cos) para relacionar el lado b con la hipotenusa (c): porque(C) = b / c Sabemos que C = 15 grados, pero no estamos resolviendo directamente b. Esta ecuación es para referencia futura. **5. Altura relativa (h) y lado (a):** El triángulo ABC es similar a un triángulo rectángulo más pequeño formado por la altura (h), la mitad de la base (b/2) y el ángulo recto A. Estos triángulos comparten el mismo ángulo agudo B (75 grados). Como los lados correspondientes de triángulos semejantes son proporcionales: h / (b/2) = sin(B) **(Ecuación 2)** **6. Combinando ecuaciones y resolviendo h:** Queremos expresar h en términos de c. Ya encontramos a en la ecuación (1): a = c * sin(75°). Sustituya este valor de a en la ecuación (2): h / (b/2) = pecado(75°) h / [(c * cos(15°))/2] = c * sin(75°) **(sustituyendo b/c de la relación de función cos)** **7. Simplificando y aislando h:** * Simplifica el denominador: h / [c * cos(15°)/2] = 2h / c * cos(15°) * Como cos(15°) es un valor positivo (ángulo agudo), podemos multiplicar ambos lados por c * cos(15°): 2h = c * sen(75°) * cos(15°) * Sabemos que sin(75°) * cos(15°) se puede expresar como una identidad trigonométrica usando la fórmula de producto por suma: pecado(75°) * cos(15°) = (sen(90°) - pecado(15°)) * cos(15°) = cos(15°) - pecado(15°) * Sustituye esta identidad y resuelve para h: 2h = c * (cos(15°) - sen(15°)) h = c * (cos(15°) - sen(15°)) / 2 **8. Conclusión:** Dado que cos(15°) y sen(15°) son valores positivos (ángulo agudo), su diferencia es positiva. Por lo tanto, h = c * (cos(15°) - sin(15°)) / 2 representa un valor positivo que es **un cuarto de la hipotenusa (c)**. Hemos demostrado que en todo triángulo rectángulo con ángulos agudos de 75 y 15 grados, la altura correspondiente a la hipotenusa es igual a un cuarto de la hipotenusa.

Frequently asked questions (FAQs)
What is the maximum value of the function f(x) = 3x^2 - 10x - 2 in the interval [-1, 5]?
+
What is the scientific notation of 1,500,000?
+
What is the value of f(x) if f(x) is a constant function and is equal to c for all values of x?
+
New questions in Mathematics
a to the power of 2 minus 16 over a plus 4, what is the result?
Solution of the equation y'' - y' -6y = 0
Let the vectors be u=(-1,0,2) , v=(0,2,-3) , w=(2,2,3) Calculate the following expressions a)<u,w> b) &lt;2u- 5v,3w&gt;
What payment 7 months from now would be equivalent in value to a $3,300 payment due 23 months from now? The value of money is 2.7% simple interest. Round your answer to 2 decimal places. Show all work and how you arrive at the answer..
Substitute a=2 and b=-3 and c=-4 to evaluate 2ac/(-2b^2-a)
The average number of babies born at a hospital is 6 per hour. What is the probability that three babies are born during a particular 1 hour period?
A triangular window has a base of 6 ft. and a height of 7 ft. What is its area?
Given (3x+2)E [2;14] how much money (in soles) does Sophia have if numerically it is the greatest value of x?
sum of 7a-4b+5c, -7a+4b-6c
The question is using rule 72 determine Kari wants to save 10,000 for a down payment on a house. Illustrate the difference in years it will take her to double her current 5,000 savings based on 6%, 12% and 18% interest rate .
A Smooth Plane is listed for $195.00. Discounts of 12% and 10% are allowed. If the customer pays cash within 30 days, an additional discount of 3% is granted. What is the cost if a carpenter takes advantage of all the discounts offered?
Let f and g be defined in R and suppose that there exists M > 0 such that |f(x) − f(p)| ≤ M|g(x) − g(p)|, for all x. Prove that if g is continuous in p, then f will also be continuous in p.
1. A jeweler has two gold bars, with 80% purity and the other with 95% purity. How much of each must be melted to obtain a 5 kilo ingot with 86% purity?
Log0
For the numbers below, select a number at random and find the probability that: a. The number is even b. The sum of the number’s digit is even c. The number is greater than 50 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
x²-7x+12=0
A candy manufacturer must monitor deviations in the amount of sugar in their products They want their products to meet standards. They selected a random sample of 20 candies and found that the sandard deviation of that sample is 1.7. What is the probabilty of finding a sample variance as high or higher if the population variance is actually 3277 Assume the population distribution is normal.
7-1=6 6x2=12 Explain that
What is the set-off agreement? Make your own example, describe and put in T accounts how you record transactions.
5 1/9 + 2 2/3