Question

Prove that in every right triangle whose acute angles measure 75 and 15 degrees, the height corresponding to the hypotenuse is equal to a quarter of it.

71

likes
355 views

Answer to a math question Prove that in every right triangle whose acute angles measure 75 and 15 degrees, the height corresponding to the hypotenuse is equal to a quarter of it.

Expert avatar
Miles
4.9
114 Answers
He aquí una prueba de que en todo triángulo rectángulo con ángulos agudos de 75 y 15 grados, la altura correspondiente a la hipotenusa es igual a un cuarto de la hipotenusa: **1. Identificar elementos clave:** Denotemos el triángulo rectángulo con: * A como el ángulo recto * B como el vértice del ángulo de 75 grados * C como el vértice del ángulo de 15 grados * h como la altura trazada desde B hacia el lado AC (la hipotenusa) * a como la longitud del lado AB (opuesto al ángulo de 75 grados) * c como la longitud del lado AC (la hipotenusa) **2. Relacionar ángulos y lados usando trigonometría:** Como tenemos un triángulo rectángulo y queremos encontrar la altura (h) en relación con la hipotenusa (c), podemos usar razones trigonométricas. * Conocemos un ángulo agudo (B = 75 grados) y necesitamos resolver un lado relativo a la hipotenusa. **3. Aplicar función sinusoidal:** La función seno (sin) relaciona el lado opuesto (a) con la hipotenusa (c) en un triángulo rectángulo: pecado(B) = a/c Sabemos que B = 75 grados y queremos encontrar h, pero esta ecuación nos ayuda a encontrar el lado a: a = c * sin(B) = c * sin(75°) **(Ecuación 1)** **4. Relacionar otros lados usando trigonometría:** Como el otro ángulo agudo (C) mide 15 grados, podemos encontrar el lado restante (b) usando el hecho de que la suma de los ángulos de un triángulo es 180 grados: A + B + C = 180° 90° + 75° + C = 180° C = 15° Ahora, podemos usar la función coseno (cos) para relacionar el lado b con la hipotenusa (c): porque(C) = b / c Sabemos que C = 15 grados, pero no estamos resolviendo directamente b. Esta ecuación es para referencia futura. **5. Altura relativa (h) y lado (a):** El triángulo ABC es similar a un triángulo rectángulo más pequeño formado por la altura (h), la mitad de la base (b/2) y el ángulo recto A. Estos triángulos comparten el mismo ángulo agudo B (75 grados). Como los lados correspondientes de triángulos semejantes son proporcionales: h / (b/2) = sin(B) **(Ecuación 2)** **6. Combinando ecuaciones y resolviendo h:** Queremos expresar h en términos de c. Ya encontramos a en la ecuación (1): a = c * sin(75°). Sustituya este valor de a en la ecuación (2): h / (b/2) = pecado(75°) h / [(c * cos(15°))/2] = c * sin(75°) **(sustituyendo b/c de la relación de función cos)** **7. Simplificando y aislando h:** * Simplifica el denominador: h / [c * cos(15°)/2] = 2h / c * cos(15°) * Como cos(15°) es un valor positivo (ángulo agudo), podemos multiplicar ambos lados por c * cos(15°): 2h = c * sen(75°) * cos(15°) * Sabemos que sin(75°) * cos(15°) se puede expresar como una identidad trigonométrica usando la fórmula de producto por suma: pecado(75°) * cos(15°) = (sen(90°) - pecado(15°)) * cos(15°) = cos(15°) - pecado(15°) * Sustituye esta identidad y resuelve para h: 2h = c * (cos(15°) - sen(15°)) h = c * (cos(15°) - sen(15°)) / 2 **8. Conclusión:** Dado que cos(15°) y sen(15°) son valores positivos (ángulo agudo), su diferencia es positiva. Por lo tanto, h = c * (cos(15°) - sin(15°)) / 2 representa un valor positivo que es **un cuarto de la hipotenusa (c)**. Hemos demostrado que en todo triángulo rectángulo con ángulos agudos de 75 y 15 grados, la altura correspondiente a la hipotenusa es igual a un cuarto de la hipotenusa.

Frequently asked questions (FAQs)
Math question: What is the slope-intercept equation of a line with a slope of 2 and a y-intercept at (0, -2)?
+
Find the value of sin(π/3) - cos(π/6) + tan(π/4)
+
What is the measure of an acute angle when its supplementary angle is twice its complement?
+
New questions in Mathematics
To calculate the probability that a player will receive the special card at least 2 times in 8 games, you can use the binomial distribution. The probability of receiving the special card in a single game is 1/4 (or 25%), and the probability of not receiving it is 3/4 (or 75%).
Determine the equations of the recipes that pass through the following pairs of points P1 (2;-1) and p2 (4;-1)
The mean temperature for july in H-town 73 degrees fahrenheit. Assuming that the distribution of temperature is normal what would the standart deviation have to be if 5% of the days in july have a temperature of at least 87 degrees?
4X^2 25
(-5/6)-(-5/4)
Credit title that represents a payment order. This model, which emerged in Brazil, can only be issued in two specific situations: in the purchase and sale of commercial products or in the provision of services. Select the correct alternative: Question 6Answer The. Present value B. Promissory note w. Present value d. Duplicate It is. Bill of exchange
Pedro had 80% of the amount needed to buy a game. Of this amount, you spent 15% on a watch and therefore, you will need to add another R$640.00 to purchase this game. Is the value of the game?
If 0101, what is the binary representation of the 4x16 decoder output?
You mix a powder drug with a 4.5ml of liquid to get a reconstituted solution with a concentration of 250mg/ml. The prescribers order is for 500 mg . You will give what ml of the reconstituted solution
How many square feet of floor area are there in three two-storey apartment houses, each of which is 38 feet wide and 76 feet long?
Determine the increase of the function y=4x−5 when the argument changes from x1=2 to x2=3
-1%2F2x-4%3D18
2.380× (1+0.05) / 0.95−0.05
You buy a $475,000 house and put 15% down. If you take a 20 year amortization and the rate is 2.34%, what would the monthly payment be?
For the numbers below, select a number at random and find the probability that: a. The number is even b. The sum of the number’s digit is even c. The number is greater than 50 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
How many moles are there in 235 grams of potassium thiosulfate pentahydrate? K2S2O3*5(H2O)
What is the percentage of nitrogen abundance in copper dinatrate Cu(NO3)2
Select a variable and collect at least 50 data values. For example, you may ask the students in the college how many hours they study per week or how old they are, etc. a. Explain what your target population was. b. State how the sample was selected. c. Summarise the data by using a frequency table. d. Calculate all the descriptive measures for the data and describe the data set using the measures. e. Present the data in an appropriate way. f. Write a paragraph summarizing the data.
Sally’s sales for last Sunday were $1,278. That was an increase of 6.5% over her sales for the previous Saturday. What were her sales for the previous Saturday?
y’’ -4y’ +4y = (12x^2 -6x)e^2x Y(0)= 1 Y’(0)=0 Y(x)=c1y1+c2y2+yp