Question

Prove that in every right triangle whose acute angles measure 75 and 15 degrees, the height corresponding to the hypotenuse is equal to a quarter of it.

71

likes
355 views

Answer to a math question Prove that in every right triangle whose acute angles measure 75 and 15 degrees, the height corresponding to the hypotenuse is equal to a quarter of it.

Expert avatar
Miles
4.9
114 Answers
He aquí una prueba de que en todo triángulo rectángulo con ángulos agudos de 75 y 15 grados, la altura correspondiente a la hipotenusa es igual a un cuarto de la hipotenusa: **1. Identificar elementos clave:** Denotemos el triángulo rectángulo con: * A como el ángulo recto * B como el vértice del ángulo de 75 grados * C como el vértice del ángulo de 15 grados * h como la altura trazada desde B hacia el lado AC (la hipotenusa) * a como la longitud del lado AB (opuesto al ángulo de 75 grados) * c como la longitud del lado AC (la hipotenusa) **2. Relacionar ángulos y lados usando trigonometría:** Como tenemos un triángulo rectángulo y queremos encontrar la altura (h) en relación con la hipotenusa (c), podemos usar razones trigonométricas. * Conocemos un ángulo agudo (B = 75 grados) y necesitamos resolver un lado relativo a la hipotenusa. **3. Aplicar función sinusoidal:** La función seno (sin) relaciona el lado opuesto (a) con la hipotenusa (c) en un triángulo rectángulo: pecado(B) = a/c Sabemos que B = 75 grados y queremos encontrar h, pero esta ecuación nos ayuda a encontrar el lado a: a = c * sin(B) = c * sin(75°) **(Ecuación 1)** **4. Relacionar otros lados usando trigonometría:** Como el otro ángulo agudo (C) mide 15 grados, podemos encontrar el lado restante (b) usando el hecho de que la suma de los ángulos de un triángulo es 180 grados: A + B + C = 180° 90° + 75° + C = 180° C = 15° Ahora, podemos usar la función coseno (cos) para relacionar el lado b con la hipotenusa (c): porque(C) = b / c Sabemos que C = 15 grados, pero no estamos resolviendo directamente b. Esta ecuación es para referencia futura. **5. Altura relativa (h) y lado (a):** El triángulo ABC es similar a un triángulo rectángulo más pequeño formado por la altura (h), la mitad de la base (b/2) y el ángulo recto A. Estos triángulos comparten el mismo ángulo agudo B (75 grados). Como los lados correspondientes de triángulos semejantes son proporcionales: h / (b/2) = sin(B) **(Ecuación 2)** **6. Combinando ecuaciones y resolviendo h:** Queremos expresar h en términos de c. Ya encontramos a en la ecuación (1): a = c * sin(75°). Sustituya este valor de a en la ecuación (2): h / (b/2) = pecado(75°) h / [(c * cos(15°))/2] = c * sin(75°) **(sustituyendo b/c de la relación de función cos)** **7. Simplificando y aislando h:** * Simplifica el denominador: h / [c * cos(15°)/2] = 2h / c * cos(15°) * Como cos(15°) es un valor positivo (ángulo agudo), podemos multiplicar ambos lados por c * cos(15°): 2h = c * sen(75°) * cos(15°) * Sabemos que sin(75°) * cos(15°) se puede expresar como una identidad trigonométrica usando la fórmula de producto por suma: pecado(75°) * cos(15°) = (sen(90°) - pecado(15°)) * cos(15°) = cos(15°) - pecado(15°) * Sustituye esta identidad y resuelve para h: 2h = c * (cos(15°) - sen(15°)) h = c * (cos(15°) - sen(15°)) / 2 **8. Conclusión:** Dado que cos(15°) y sen(15°) son valores positivos (ángulo agudo), su diferencia es positiva. Por lo tanto, h = c * (cos(15°) - sin(15°)) / 2 representa un valor positivo que es **un cuarto de la hipotenusa (c)**. Hemos demostrado que en todo triángulo rectángulo con ángulos agudos de 75 y 15 grados, la altura correspondiente a la hipotenusa es igual a un cuarto de la hipotenusa.

Frequently asked questions (FAQs)
What is the speed of a car that travels a distance of 150 miles in a time of 2.5 hours?
+
Math Question: Graph the inequality y ≤ 2x - 3 and shade the region that satisfies the inequality. (
+
What is the variance of the dataset: {3, 5, 7, 9, 11}?
+
New questions in Mathematics
-11+29-18
The derivative of a power is obtained just by subtracting 1 from the power True or false
1 plus 1
(3x^(2) 9x 6)/(5x^(2)-20)
If eight basketball teams participate in a tournament, find the number of different ways that first, second, and third places can be decided assuming that no ties are allowed.
calculate the area in square units of A rectangle with length 6cm and breadth 5cm
determine the polynomial F of degree 2 that interpolates. f at points (0;1) (2;5) (4;6). calculate F(0.8). Note: Using the polynomial expression with difference operator.
With the aim of identifying the presence of the feline leukemia virus (FeLV), blood samples were collected from cats sent to a private veterinary clinic in the city of Belo Horizonte. Among the animals treated, it was possible to observe that age followed a Normal distribution with a mean of 4.44 years and a standard deviation of 1.09 years. Considering this information, determine the value of the third quartile of the ages of the animals treated at this veterinary clinic. ATTENTION: Provide the answer to exactly FOUR decimal places
A box of numbered pens has 12 red, 12 blue, 12 green and 12 yellow pens. The pens for each colour are numbered from 1 to 12. There is a unique number on each pen, so no pen is exactly the same as any other pen in the box. When reaching into the box to randomly draw five pens without replacement, what is the proportion of getting exactly four pens of the same colour (Note: the numbers matter but the order does not)?
sum of 7a-4b+5c, -7a+4b-6c
Convert 5/9 to a decimal
ind the z-score for which 72% of the distribution's area lies between -z and z. -1.7417, 1.7417 -1.1538, 1.1538 -1.0803, 1.0803 -2.826, 2.826
In a 24 hours period, the average number of boats arriving at a port is 10. Assuming that boats arrive at a random rate that is the same for all subintervals of equal length (i.e. the probability of a boat arriving during a 1 hour period the same for every 1 hour period no matter what). Calculate the probability that more than 1 boat will arrive during a 1 hour period. (P(X>1) ) Give your answers to 4 decimal places and in a range between 0 and 1
factor the polynomial completely over the set of complex numbers b(x)=x^4-2x^3-17x^2+4x+30
Let X be a discrete random variable such that E(X)=3 and V(X)=5. Let 𝑌 = 2𝑋^2 − 3𝑋. Determine E(Y).
x²-7x+12=0
To paint a 250 m wall, a number of workers were employed. If the wall were 30 m longer, 9 more workers would be needed. How many were employed at the beginning?
answer this math question The scale on a map is drawn so that 5.5 inches corresponds to an actual distance of 225 miles. If two cities are 12.75 inches apart on the map, how many miles apart are they? (Round to the nearest tenth) miles apart. The two cities are how many miles apart
3(x-4)=156
Sarah is lining a square tray with 1 inch square tiles. the side length of the tray is 9 inches. How many tiles does Sarah need?