The gravitational force between two particles can be calculated using the formula for the gravitational force:
F = \dfrac{G \times m_1 \times m_2}{r^2}
where:
F is the gravitational force,
G = 6.67 \times 10^{-11} \, \text{N m}^2/\text{kg}^2 is the gravitational constant,
m_1 = 3.20 \times 10^{-27} \, \text{kg} is the mass of the first particle,
m_2 = 3.20 \times 10^{-27} \, \text{kg} is the mass of the second particle,
r = 1.06 \times 10^{-10} \, \text{m} is the distance between the particles.
Substitute the given values into the formula:
F = \dfrac{6.67 \times 10^{-11} \times 3.20 \times 10^{-27} \times 3.20 \times 10^{-27}}{(1.06 \times 10^{-10})^2}
F = \dfrac{6.67 \times 3.20 \times 3.20 \times 10^{-11} \times 10^{-27} \times 10^{-27}}{1.06^2 \times 10^{-10} \times 10^{-10}}
F = \dfrac{6.67 \times 3.2 \times 3.2}{1.1236} \times 10^{-55}
F = \dfrac{6.67 \times 10^{-11} \times 10^{-11} \times 3.2 \times 3.2}{1.1236}
F = \dfrac{6.67 \times 3.2 \times 3.2}{1.1236} \times 10^{-22}
F \approx 6.08 \times 10^{-44} \, \text{N}
\boxed{F \approx 6.08 \times 10^{-44} \, \text{N}}